# 3.1 Measurements and their errors

# 3.1.1 Use of SI units and their prefixes

• SI units

| Quantity            | Unit     | Symbol |
|---------------------|----------|--------|
| Mass                | kilogram | kg     |
| Length              | metre    | m      |
| • Time              | second   | S      |
| Current             | ampere   | A      |
| Temperature         | kelvin   | К      |
| Amount of substance | mole     | mol    |

### • Prefixes

|   | Name  | Symbol | Multiplier       |
|---|-------|--------|------------------|
|   | Tera  | Т      | 10 <sup>12</sup> |
|   | Giga  | G      | 10 <sup>9</sup>  |
|   | Mega  | М      | $10^{6}$         |
|   | Kilo  | k      | $10^{3}$         |
| • | Centi | с      | $10^{-2}$        |
|   | Milli | m      | $10^{-3}$        |
|   | Micro | μ      | $10^{-6}$        |
|   | Nano  | n      | 10 <sup>-9</sup> |
|   | Pico  | р      | $10^{-12}$       |
|   | Femto | f      | $10^{-15}$       |

# 3.1.2 Limitation of physical measurements

### • Definitions

|   | Term                                    | Definition                                                                                                                                      |
|---|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| • | Precision of a measurement              | Precise measurements = very little spread about the mean value. Depends only on the extend of random error                                      |
|   | Precision of an instrument / resolution | The smallest non-zero reading that can be measured                                                                                              |
|   | Repeatability                           | If the original experimenter can redo the experiment with the same equipment and method and get the same results it is repeatable               |
|   | Reproducibility                         | If the experiment is redone by a different person or with different techniques and equipment and the same results are found, it is reproducible |
|   | Accuracy                                | How close a measurement or answer is to the true value                                                                                          |

- Types of errors
  - Random errors
    - $\circ~$  Affect precision, cause differences in measurements

- Cannot get rid of all random errors
- Reducing random errors
  - Take at least 3 repeats and calculate a mean
  - Use computers/data loggers/cameras to reduce human error and enable smaller intervals
  - Use appropriate equipment
  - Take large measurements
- Systematic errors
  - Affect accuracy
  - $\circ~$  Occur due to the faults in apparatus / experimental method
  - $\circ~$  Causes all results to be too high or too low by the same amount each time
  - Types
    - Zero error: balance not zeroed correctly (all increase / decrease by the same amount)
    - Parallax error: reading the scale at a different angle than parallel
  - Reducing systematic errors
    - Calibrate the apparatus by measuring a known value
    - Correct for background radiation for radiation experiments
    - Read the meniscus at eye level
    - Use controls in experiments
- Uncertainty of measurements
  - The bounds in which the accurate value can be expected to lie
  - + Absolute uncertainty: uncertainty given as a fixed quantity e.g. 7  $\pm$  0.6 V
  - Fractional uncertainty: uncertainty as a fraction of the measurement e.g.  $7 \pm \frac{3}{35}$  V
  - Percentage uncertainty: uncertainty as a percentage of the measurement e.g.  $7 \pm 8.6\%$  V
  - To reduce percentage and fractional uncertainty: measure larger quantities
  - Uncertainty can only be quoted to the same precision as the measuring instrument / same number of decimal places as the data
    - Work out uncertainty from the **number of decimal places** if not specified
- Reading
  - <u>1 value</u> is found
  - Uncertainty in reading =  $\pm$  smallest division
- Measurement
  - The difference between 2 values are found
  - Uncertainty in measurement =  $\pm$  2 × smallest division
- Uncertainty in different situations
  - Digital readings: uncertainty quoted or assumed to be  $\pm$  the last significant digit
  - Repeated data: uncertainty =  $\pm \frac{\text{range}}{2}$
- Uncertainty calculations
  - Adding / subtracting data = <u>add absolute</u> uncertainties
  - Multiplying / dividing data = add percentage uncertainties
  - Raising to a power = <u>multiply percentage</u> uncertainty by power
  - Uncertainties given to the same number of sig figs as the data
- Uncertainties on graphs
  - Uncertainties shown as error bars on graphs
  - A line of best fit on a graph should go through all error bars (excluding anomalous points)
- Uncertainty of gradient of line of best fit
  - Draw a steepest and shallowest line of worst fit (must go through all error bars)
  - Calculate the gradient of the line of best and worst fit
  - The uncertainty is the difference between the best gradient and the worst gradient (the one with the greatest difference in magnitude from the 'best' line of best fit)
  - percentage uncertainty =  $\frac{\text{maximum gradient} \text{minimum gradient}}{2} \times 100\%$

2

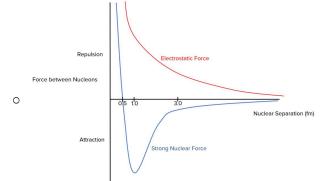
- Uncertainty of x and y-intercept
  - percentage uncertainty =  $\frac{\text{maximum y intercept} \text{minimum y intercept}}{2} \times 100\%$

# 3.1.3 Estimation of physical quantities

- Orders of magnitude
  - Powers of 10 which describe the size of a value
  - Give a value to the nearest order of magnitude = round to the nearest order of magnitude

# 3.2.1 Particles

# 3.2.1.1 Constituents of the atom


• Constituents of an atom

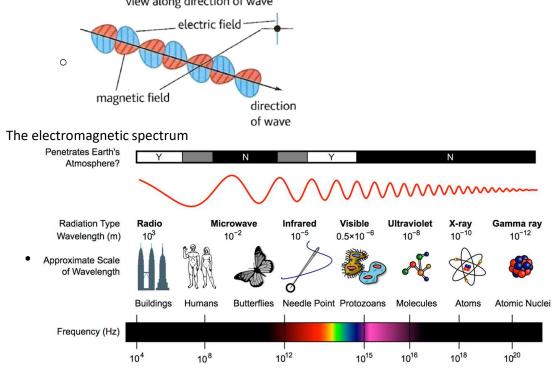
|   | Particle | Charge (C)               | Relative charge | Mass (kg)                   | <b>Relative Mass</b> | Specific Charge (Ckg <sup>-1</sup> ) |
|---|----------|--------------------------|-----------------|-----------------------------|----------------------|--------------------------------------|
|   | Proton   | +1.6 × 10 <sup>-19</sup> | +1              | 1.67(3) × 10 <sup>-27</sup> | 1                    | 9.58 × 10 <sup>7</sup>               |
| • | Neutron  | 0                        | 0               | 1.67(5) × 10 <sup>-27</sup> | 1                    | 0                                    |
|   | Electron | -1.6 × 10 <sup>-19</sup> | -1              | 9.11 × 10 <sup>-31</sup>    | 0.0005               | 1.76 × 10 <sup>11</sup>              |

- Specific charge
  - specific charge =  $\frac{\text{charge}}{\text{mass}}$
  - Unit = C kg<sup>-1</sup>
- Nuclide notation
  - $^{A}_{Z}X$
  - $\overline{A}$  = nucleon / mass number = number of nucleons (proton + neutron)
  - Z = proton / atomic number = number of protons
  - X = symbol for the element
- Isotopes
  - Atoms with the same number of protons and electrons but different numbers of neutrons & different atomic masses
- Nuclide
  - A type of nucleus
- Atom and nucleus size
  - Size of atom  $\approx 10^{-10}$  m
  - Size of nucleus  $\approx 10^{\text{-}15}\,\text{m}$  = 1 fm

# 3.2.1.2 Stable and unstable nuclei

- The strong nuclear force (SNF)
  - Only affects hadrons
  - Acts on nucleons
  - Keeps the nucleus stable by counteracting the electrostatic force of repulsion between protons in the nucleus and keeping protons and neutrons together
  - Prevents proton and neutron from moving closer or further apart
  - Very short range
    - Repulsion for separations less than about 0.5 fm
    - Attraction for separations up to **3 fm** (1 fm =  $10^{-15}$  m)
    - Negligible beyond **3 fm**
  - Exchange particles = pions / gluons
  - Much larger in magnitude compared to other fundamental forces




- Unstable nuclei
  - Too many protons and / or neutrons

- SNF not enough to keep them stable
- Decay in order to become stable (type depends on the amount of each nucleon)
- Alpha decay •
  - Too many protons and neutrons
  - Alpha particle emitted (2 protons + 2 neutrons)
  - ${}^{A}_{Z}X \rightarrow {}^{A-4}_{Z-2}Y + {}^{4}_{2}\alpha$
- Beta-minus decay
  - Too many neutrons (neutron-rich)
  - A neutron changes into a proton
  - Fast-moving electron (beta particle) + an electron antineutrino (antiparticle with no charge) emitted
  - ${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + {}^{0}_{-1}\beta + \overline{v_{e}}$
- Neutrino (v) •
  - At first scientists believed that only an electron was emitted from the nucleus during betaminus decay
  - Observation of energy levels before + after decay showed that energy was not conserved (some energy was lost)
  - Neutrinos were hypothesised for the loss of energy and later observed
- Why is collaboration important to making advances in understanding of particle physics •
  - Results of experiments must be independently checked/validated/peer reviewed before they are accepted/can be confirmed
  - Particle accelerators are very expensive and collaboration helps to spread the cost of building them
  - Many skills and disciplines are required which one team are unlikely to have
  - Lots of data to process so more teams are needed

# 3.2.1.3 Particles, antiparticles and photons

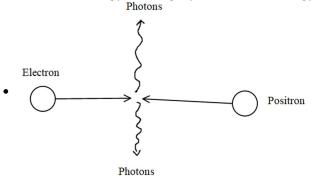
- EM radiation
  - Emitted when charged particles lose energy
    - When a fast-moving electron is stopped / slows down / changes direction
    - When an electron in a shell of an atom moves to a different shell of lower energy
  - Consists of two linked electric and magnetic field waves that are at right angles to each other and in phase

view along direction of wave



- Photon model of EM radiation
  - EM waves are emitted as short burst of waves in different directions

- Each burst = a packet of EM waves = a photon
- Photons transfer energy and have **no mass**
- The energy of the photons is directly proportional to the frequency of EM radiation


$$\circ \quad E = hf = \frac{hc}{\lambda}$$

•  $h = Planck constant = 6.63 \times 10^{-34} Js$ 

- Electron volts
  - 1 electron volt = the energy transferred when an electron is moved through a p.d. of 1 V
  - 1 eV = 1.60 × 10<sup>-19</sup> J (1 MeV = 1.60 × 10<sup>-13</sup> J)
- Antiparticle
  - All particles of normal matter have a corresponding antiparticle
  - Same rest energy and mass as the particle
  - All other properties are opposite e.g. charge / strangeness
  - Will undergo annihilation with the normal particle if they meet
- Types of antiparticles

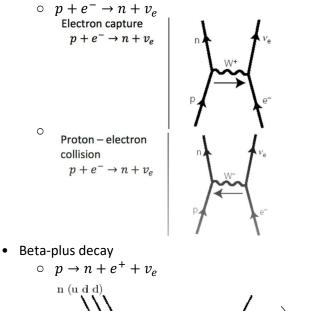
| • | Particle | Antiparticle |  |
|---|----------|--------------|--|
|   | Electron | Positron     |  |
|   | Proton   | Antiproton   |  |
|   | Neutron  | Antineutron  |  |
|   | Neutrino | Antineutrino |  |

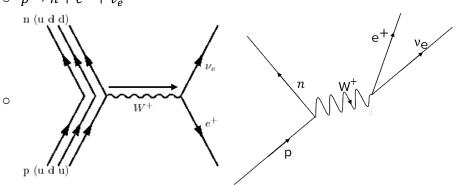
- Annihilation
  - Where a particle and a corresponding antiparticle meet
  - All their mass and KE is converted into two gamma photons of equal frequency moving in opposite directions (to conserve momentum)
  - Energy and momentum is conserved in the process
  - Minimum energy of a single photon = rest energy of the particle



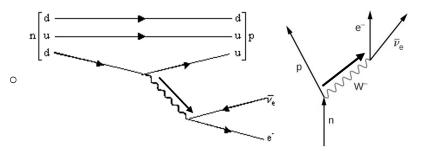
- Pair production
  - A photon is converted into a particle and a corresponding antiparticle
  - Can only occur when the photon has an energy greater than the total rest energy of both particles
  - Minimum energy of a photon needed:  $hf_{min} = 2 \times rest energy = 2E_0$
  - Excess energy is converted into KE of particles



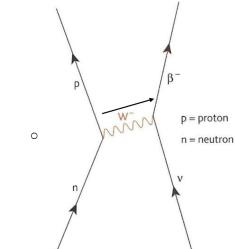

### 3.2.1.4 Particle interactions


Four fundamental interactions

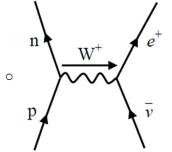
| Interaction Exchange parti | cle / Range (m) Acts on | Strength |
|----------------------------|-------------------------|----------|
|----------------------------|-------------------------|----------|


|                 | gauge bosons                        |                   |                     |     |
|-----------------|-------------------------------------|-------------------|---------------------|-----|
| Strong nuclear  | Pions (particles)<br>Gluon (quarks) | 10 <sup>-15</sup> | Hadrons             | 1st |
| Weak nuclear    | W boson ( $W^+$ or $W^-$ )          | 10 <sup>-18</sup> | All particles       | 3rd |
| Electromagnetic | Virtual photon ( $\gamma$ )         | Infinite          | Charged particles   | 2nd |
| Gravity         | Graviton                            | Infinite          | Particles with mass | 4th |

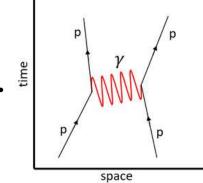
- Exchange particles
  - The force carrier for fundamental forces
  - Moves between the particles affected by the force and create the forces
  - Transfer energy, force, momentum, and (sometimes) charge between the particles experiencing the force
  - Each fundamental force has its own exchange particles
- The weak nuclear force
  - Responsible for beta decay, electron capture and electron-proton collisions
  - Exchange particles = W bosons ( $W^+$  or  $W^-$ )
    - Non-zero rest mass
    - Very short range  $\leq$  0.001 fm (10<sup>-18</sup> m)
    - Positively or negatively charged
- Weak interactions
  - Electron capture (electron-proton collisions)
    - Same equation + different exchange particle







• Beta-minus decay  $\circ n \rightarrow p + e^- + \overline{v_e}$ 



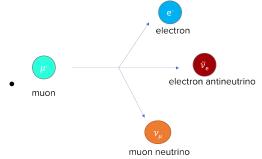

• Neutron-neutrino interaction



• Proton-antineutrino interaction



• Electrostatic interactions




#### opute

## 3.2.1.5 Classification of particles

- Deducing whether is strong interaction or not
  - Leptons present: must be weak
    - Leptons not present: strong or weak
    - Strangeness not conserved: must be weak
- Classifying particles
  - All particles are either hadrons or leptons
  - Leptons
    - $\circ$   $\;$  Fundamental particles cannot be broken down any further
    - $\circ$   $\;$  Interacts via weak interaction only

- Hadrons
  - Formed of quarks (fundamental particles)
  - Interact through weak or strong interaction
- Both experiences gravitational interaction and electromagnetic interaction (if charged)
- Types of hadrons
  - Baryons / antibaryons
  - Mesons
- Baryons / antibaryons
  - Hadrons that are formed of **3 quarks** (3 antiquarks for antibaryons)
  - Proton is the only stable baryon
  - All other baryons eventually decay into protons
  - (Neutrons are also baryons)
- Mesons
  - Formed of **1 quark + 1 antiquark**
  - Hadrons that do not include protons in their decay products
  - Very short life time (annihilate almost immediately) + all unstable
  - Pion /  $\pi$  meson
    - The lightest and most stable meson
    - Produced in high energy particle collisions, discovered in cosmic rays
    - Exchange particle for SNF
    - Different charges:  $\pi^+$ ,  $\pi^-$ ,  $\pi^0$
  - Kaon / K meson
    - Heavier + less stable
    - $\circ$   $\,$  Produced by the strong interaction between pions and protons
    - Eventually decay into pions (many possibilities)
    - Different charges:  $K^+$ ,  $K^0$ ,  $K^-$
- Baryon number
  - 1 = baryon / -1 = antibaryon / 0 = not a baryon
  - A quantum number
  - Always conserved in particle interactions
- Types of leptons
  - Electron (e<sup>-</sup>)
    - Relative charge = -1
    - Electrons and their neutrinos / antiparticles are the only stable leptons
  - Positron (e<sup>+</sup>)
    - Will eventually encounter an electron and annihilate
  - Muon (μ<sup>-</sup>)
    - Heavier than electrons
    - More unstable
    - Relative charge = -1
    - $\circ~$  Muons decay into electrons by weak interaction:  $\mu^- \rightarrow e^- + \bar{\nu_e} + \nu_\mu$



- Antimuon ( $\mu^+$ )
  - Antimuon ( $\mu^+$ ) decays into positions:  $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_{\mu}$
- Neutrinos ( $v_e, v_\mu$ )
  - Negligible mass & 0 charge
  - The most abundant leptons in the universe
- Tauons and & their neutrinos (not required to know)

- Lepton number
  - Gives the number of leptons
  - 1 = lepton, -1 = antilepton, 0 = not a lepton
  - Conserved during reactions
- Strangeness
  - A quantum number
  - Reflect the fact that strange particles are always created in pairs
  - Explain why some particle interactions take place more slowly than others / do not occur at all
  - Always conserved in strong interactions
  - Change by 0, +1 or -1 in weak interactions
- Strange particles
  - Particles which are produced by the strong nuclear interaction but decay by the weak interaction
  - Strange particles are created in twos
  - e.g. kaons (decay into pions through the weak interaction)
  - Assume all others are non-strange particles
  - Particles with strange quarks have long lifetimes
- Investigating particle physics
  - Particle accelerators may be built
  - These are very expensive + produce huge amounts of data
  - Scientific investigations rely on collaboration of scientists internationally
- Formulae sheet data (no need to memorise)

| Class      | Nam                           | пе                    | Symbol                                      | Rest energy/MeV |
|------------|-------------------------------|-----------------------|---------------------------------------------|-----------------|
| photon     | phot                          | on                    | γ                                           | 0               |
| lepton     | neut                          | rino                  | ve                                          | 0               |
|            |                               |                       | $v_{\mu}$                                   | 0               |
|            | elec                          | tron                  | $e^{\pm}$                                   | 0.510999        |
|            | muo                           | 'n                    | $\mu^{\pm}$                                 | 105.659         |
| mesons     | πm                            | eson                  | $\pi^{\pm}$                                 | 139.576         |
|            |                               |                       | $\pi^0$                                     | 134.972         |
|            | Km                            | eson                  | $K^{\pm}$                                   | 493.821         |
|            |                               |                       | $K^0$                                       | 497.762         |
| baryons    | prote                         | on                    | р                                           | 938.257         |
|            | neut                          | ron                   | n                                           | 939.551         |
|            |                               | Lepton number         |                                             |                 |
| Particles: | Particles: e <sup>-</sup> , v |                       | <sub>e</sub> ;μ¯, ν <sub>μ</sub>            | + 1             |
| Antipartic | les:                          | $e^+, \overline{v}_0$ | $\overline{e}, \mu^+, \overline{\nu_{\mu}}$ | - 1             |

### 3.2.1.6 Quarks and antiquarks

- Quarks
  - Baryons and mesons are composed of quarks
  - Quarks feel the strong force
  - Quarks are always found in pairs or triplets
- Combination of quarks and antiquarks in baryons / antibaryons

| Particle   | Combination | Baryon number | Strangeness |
|------------|-------------|---------------|-------------|
| p          | uud         | 1             | 0           |
| n          | udd         | 1             | 0           |
| Antiproton | uud         | -1            | 0           |

| Antineutron | $\overline{u}\overline{d}\overline{d}$ | -1 | 0  |
|-------------|----------------------------------------|----|----|
| $\Sigma^+$  | uus                                    | 1  | -1 |
| $\Sigma^0$  | uds                                    | 1  | -1 |
| Σ-          | dds                                    | 1  | -1 |

• Combination of quarks and antiquarks in mesons

|   | Particle              | Combination                        | Charge (e) | Strangeness                                 | Baryon number |
|---|-----------------------|------------------------------------|------------|---------------------------------------------|---------------|
|   | $\pi^0$               | $u\overline{u}$ or $d\overline{d}$ | 0          | 0                                           | 0             |
|   | $\pi^+$               | ud                                 | +1         | 0                                           | 0             |
| • | π-                    | ūd                                 | -1         | 0                                           | 0             |
|   | <i>K</i> <sup>0</sup> | $d\overline{s}$ or $\overline{d}s$ | 0          | $d\overline{s} = +1$ , $\overline{d}s = -1$ | 0             |
|   | <i>K</i> <sup>+</sup> | us                                 | +1         | +1                                          | 0             |
|   | <i>K</i> <sup>-</sup> | ūs                                 | -1         | -1                                          | 0             |

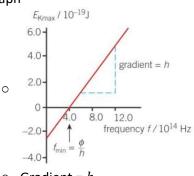
• Strangeness of particles

|   | Strangeness | Particles                                               |
|---|-------------|---------------------------------------------------------|
|   | -3          | $\Omega^{-}$                                            |
|   | -2          | $\Xi^{-}, \Xi^{0}$                                      |
| • | -1          | Λ, $K^-$ , $K^0$ , $\Sigma^+$ , $\Sigma^-$ , $\Sigma^0$ |
|   | 0           | $p, n, \pi^+, \pi^-, \pi^0$                             |
|   | 1           | K <sup>+</sup> , K <sup>0</sup>                         |

- Neutron decay
  - Decay into proton as neutrons are baryons
  - A down quark changes to an up quark
  - $n \rightarrow p + e^- + \overline{v_e}$

# 3.2.1.7 Applications of conservation laws

- Properties conserved in particle interactions
  - Energy and momentum: always
    - Reactants rest energy < products rest energy = reactants KE > products KE
  - Charge: always
  - Baryon number: always
  - Electron lepton number: always
  - Muon lepton number: always
  - Strangeness: only in strong interactions
  - All conservation laws obeyed = the interaction is possible
- β decay
  - $\beta^-$  decay
    - $\circ~$  A neutron in a neutron-rich nucleus will decay into a proton
    - A down quark changes to an up quark
    - $\circ \ n \to p + e^- + \overline{v_e}$
  - $\beta^+$  decay
    - $\circ~$  A proton in a proton-rich nucleus changes into a neutron
    - An up quark changes to a down quark
    - $\circ p \rightarrow n + e^+ + v_e$

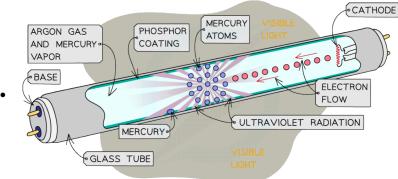

# 3.2.2 Electromagnetic radiation and quantum phenomena

# 3.2.2.1 The photoelectric effect

- The photoelectric effect
  - Photoelectrons are emitted from the surface of a metal after light above a certain frequency (threshold frequency) is shone on it
- Work function
  - The minimum energy to remove an electron from the metal surface when the metal is at **zero potential**
  - Denoted by  $\phi$
- Stopping potential (V<sub>s</sub>)
  - The PD needed to apply across the metal to stop the photoelectrons with the maximum KE  $(E_{k(max)})$
  - Minimum energy needed per unit charge to stop photoelectric emissions
  - $E_{k(\max)} = e \times V_s$
- Threshold frequency
  - The minimum frequency of the radiation / light / photon needed to liberate an electron from the surface of a material
  - $hf > \phi$

$$f \cdot - \frac{\phi}{\phi}$$

- $f_{\min} = \frac{1}{h}$ Why wave theory doesn't work
  - There is no photoemission below the threshold frequency even with bright light
    - Wave theory would allow gradual accumulation of energy to cause emission
    - Any frequency of light should be able to cause electron emission
  - Electrons are emitted with no noticeable decay
    - In wave theory time would elapse while an electron gains sufficient energy to leave the surface
  - Intensity of the light does not affect the KE of the emitted electrons
  - High intensity waves would be expected to give higher KE to an electron
- Explanation with the photon model
  - When light is incident on a metal surface an electron at the surface absorbs **a single photon** from the incident light and gains energy equal to *hf*
  - An electron can leave the metal surface if the energy gained > the work function of the metal
  - Excess energy gained becomes KE of the photoelectron
- Effect of increasing the intensity of light
  - There are more photons striking the surface per second
  - Current increases as the number of electrons emitted per second increases
  - Photoelectric equation
    - $E = hf = \phi + E_{k(max)}$
    - $E_{k(max)} = hf \phi$
    - Graph




- Gradient = h
- y-intercept =  $-\phi$
- Energy level of emitted electrons

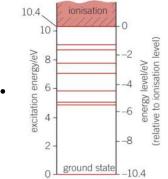
- There exists a maximum value of energy
- Energy of photons are constant (E = hf)
- One to one interaction between photon and electron so a fixed amount of KE is transferred
- The energy required to remove an electron varies so the KE of electrons varies
  - Max KE = photon energy work function
  - $\circ$  Deeper electrons require more energy to remove than  $\phi$

## 3.2.2.2 Collisions of electrons with atoms

- Electron energy level
  - Electrons in atoms can only exist in **discrete energy levels**
  - These electrons can gain energy from collisions with free electrons / absorbing photons
- Excitation
  - Electrons move up in energy level
  - It will quickly return to its original energy level (the ground state) and release energy gained as photons
- Ionisation
  - Electrons gain enough energy to be removed from the atom entirely
  - Occurs if the energy of the free electron is greater than the ionisation energy
- Excitation energies
  - The energy values at which an atom absorbs energy
- Flourescent tube
  - Filled with mercury vapour
  - High voltage applied which accelerates free electrons through the tube
  - Free electrons collide with the mercury atoms
  - Electrons in the mercury atoms are raised to a higher energy level
  - The mercury atom become ionised  $\rightarrow$  release more free electrons
  - The new free electrons collide with the mercury atoms, causing them to become excited
  - Mercury atoms **de-excites** and relaxes to a lower energy level
    - $\circ$   $\,$  They release photons of energy equal to the energy difference between the levels
    - Frequency is mostly in the **UV range**
  - The fluorescent coating on the inside of the tube absorbs these UV photons and therefore electrons in the atoms of the coating become excited and de-excite releasing photons of **visible light**
  - Emitted radiation consists of (a range of) lower photon energies / frequencies or longer wavelengths



- Why electrons only need a minimum energy level to excite an atom
  - An exact amount of energy is needed to excite an atom to a certain energy level
  - All of the photon's energy will be absorbed in a 1 to 1 interaction
  - Electron can transfer part of its energy to cause the excitation and continue moving at a lower KE


# 3.2.2.3 Energy levels and photon emission

- Ground state
  - When electrons / atoms are in there **lowest energy state** / most stable state
- Excited state

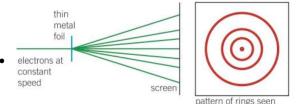
- Electron (in ground state) has moved to higher energy level / shell
- Ionisation energy
  - The minimum energy to remove an electron from an atom from the ground state
- De-excitation

•

- The electron configuration in an excited atom is unstable due to a vacancy in the shell that the excited electron left
- The vacancy is filled by an electron from an outer shell transferring to it
- Possible energy level of atoms
  - An atom can only have certain levels of energy
  - Each allowed energy level = a certain electron configuration of the atom



- Line spectrum
  - Obtained by passing the light from a fluorescent tube through a diffraction grating or prism
  - Each line = a specific wavelength of light emitted by the tube = corresponds a specific photon energy emitted
  - Show that electrons in atoms can only transition between discrete energy levels




- Line absorption spectrum
  - Continuous spectrum with black lines at certain intervals
  - Obtained by passing white light through a cooled gas
  - Black lines represent the possible differences in energy levels
    - The atoms in the gas can only absorb photons of an energy equal to the exact difference between two energy levels
- Why only certain frequencies of light can be absorbed
  - Electrons occupy discrete energy levels
  - They need to absorb an exact amount of energy to move to a higher level
  - Photons need to have certain frequency to provide this energy (E = hf)
  - Energy required is the same for a particular atom
  - All energy of the photon is absorbed in **1 to 1** interaction between photon + electron
- Energy level difference
  - Difference between two energy levels = a line in the line spectrum = a specific photon energy emitted by a fluorescent tube / absorbed in a line absorption spectrum
  - Energy of photon emitted = energy lost by the electron = energy lost by the atom
  - Energy of the emitted photon  $hf = E_1 E_2$

### 3.2.2.4 Wave-particle duality

- Evidence for wave-particle duality of light / EM waves
  - Acting as wave: diffraction and interference
  - Acting as particle: photoelectric effect
- De Broglie hypothesis
  - Matter particles have a dual wave-particle nature
- Evidence for de Broglie hypothesis
  - Collisions by incident electrons move electrons in atoms between energy levels
  - Photon emitted when atoms de-excite or electrons move to lower energy levels
  - Wave properties of electrons

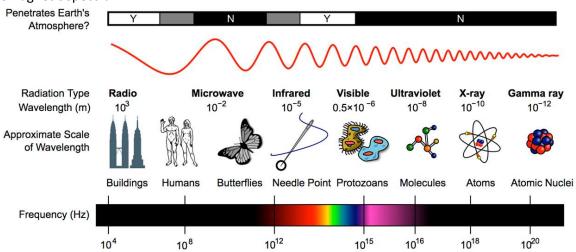
- Diffraction of electrons by a metal crystal
- $\circ~$  Electrons can be  $\mbox{diffracted},$  shown as concentric rings on screen
- $\circ~$  Foil / graphite causes electrons to travel in particular directions
- Bright rings / maximum intensity occurs where waves arrive in phase and interfere constructively
- Particle behaviour would only produce a circle of light as particles scatter randomly
- $\circ~$  Only waves can experience diffraction  $\rightarrow$  electrons also have a dual wave-particle nature
- Similar to diffracting grating maxima when  $n\lambda = d \sin \theta$
- Particle properties of electrons
  - $\circ~$  Electrons must provide enough kinetic energy for light to be emitted
  - $\circ~$  Instant light as electron can provide the energy in <code>discrete</code> amounts to excite the atoms
  - Waves → energy will accumulate gradually so time is needed until light is emitted & light will always be emitted no matter how low the energy is
- Property later also shown for other particles



- De Broglie wavelength
  - The wavelength of the wave-like behaviour of a matter particle

on the screen

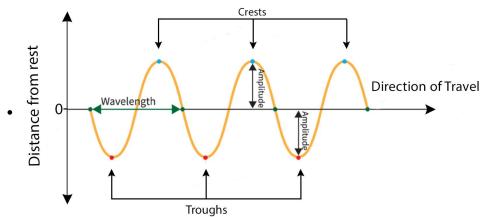
• 
$$\lambda = \frac{h}{p} = \frac{h}{mv}$$


- Higher particle momentum = shorter wavelength = less diffraction = concentric rings of the interference pattern become closer
- Change in understanding of matter
  - Knowledge and understanding of the nature of matter changes over time in line with new experimental evidence gathered
  - Such changes need to be evaluated through peer review and validated by the scientific community before being accepted

# 3.3.1 Progressive and stationary waves

# 3.3.1.1 Progressive waves

### • Mechanical waves


- Involve particles in a substance vibrating
- Electromagnetic waves
  - Travel through space without the need for a medium
- Electromagnetic spectrum



- Progressive wave
  - A wave that transfers energy and momentum from one point to another without transferring the medium itself
  - Made up of particles of an oscillating medium
- Terminologies

•

| -                    |                                                                                                     |  |
|----------------------|-----------------------------------------------------------------------------------------------------|--|
| Term                 | Definition                                                                                          |  |
| Displacement         | The vibrating particle's distance and direction from its equilibrium position                       |  |
| Amplitude            | A wave's <b>maximum displacement</b> from the equilibrium position (unit = m)                       |  |
| Frequency <i>f</i>   | The number of complete oscillations passing through a point per second (unit = Hz)                  |  |
| Period T             | The time taken to make one oscillation (unit = s)                                                   |  |
| Wavelength $\lambda$ | The length of one whole oscillation (e.g. the distance between successive peaks/troughs) (unit = m) |  |
| Speed c              | Distance travelled by the wave per unit time (unit = ms <sup>-1</sup> )                             |  |
| Phase                | The fraction of a cycle a vibrating particle has completed since the start of the cycle             |  |
| Cycle                | One complete cycle of a wave is from maximum displacement to next maximum displacement              |  |



- Phase difference •
  - The fraction of a cycle between the vibration of two particles

• phase difference in radians – 
$$2\pi d = 2\pi \times \text{distance between two points}$$

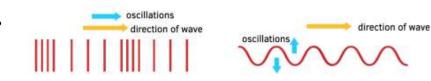
- phase difference in radians =  $\frac{1}{\lambda}$  = wavelength
- In phase •
  - Two points on a wave are in phase if they are both at the same point of the wave cycle
  - Same displacement and velocity
  - Phase difference is a multiple of 360° / 2π
  - Completely out of phase / in anti-phase
    - $(2n+1)\pi$  apart in phase
- Wave speed

• 
$$c = f\lambda$$

Frequency / period conversion

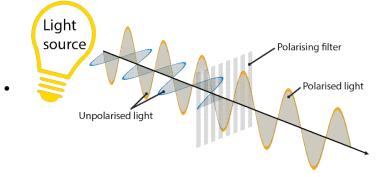
• 
$$f = \frac{1}{T}$$

• 
$$T = \frac{1}{f}$$


- Properties of waves
  - Reflection
  - Refraction
  - Diffraction

### 3.3.1.2 Longitudinal and transverse waves

- Longitudinal and transverse waves •
  - Transverse waves
    - The particles oscillate perpendicular to the direction of travel of the wave
    - Can be polarised
    - e.g. EM waves, waves on a string
  - Longitudinal waves
    - The particles oscillate **parallel** to the direction of travel of wave
    - The particles get compressed so they have more energy than the particles around them
    - $\circ$  When they vibrate they transfer energy to particles nearby  $\rightarrow$  more compressions
    - Cannot be polarised
    - Cannot travel in vacuums (require a medium to propagate)
    - e.g. sound waves


#### **Longitudinal Waves**

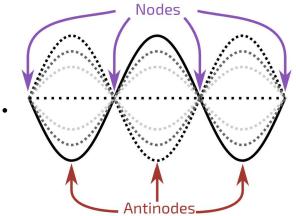
#### **Transverse Waves**



- Types of waves
  - Mechanical waves
    - Oscillations of the particles of the medium

- Electromagnetic waves
  - Oscillating electric and magnetic field that progress through space without the need for a substance
  - Transverse waves
  - $\circ~$  All have the same speed in vacuum (3×10<sup>8</sup> ms<sup>-1</sup>)
- Polarisation
  - Can only happen for transverse waves
    - Oscillations of particles / fields are perpendicular to the direction of energy propagation
    - $\circ$   $\,$  Wave's oscillations exist in more than one plane initially
  - Particle oscillations **restricted to a single plane** perpendicular to the direction of wave propagation
  - Cannot occur on longitudinal waves as it does not oscillate perpendicular to the direction of travel
  - (Transverse waves are called plane-polarised if the vibrations occur in one plane only, more than one plane = unpolarised)
- Polarising filter




- Only the wave oscillating along the transmission axis can completely pass through
- Greater angle between wave + axis = lower light intensity
- Waves oscillating perpendicular to the transmission axis cannot pass through = 0 intensity
- Why only transverse waves can be polarised
  - Transverse waves oscillate perpendicular to direction of travel of wave
    - They initially oscillate in many different planes
    - $\circ$   $\,$  Intensity is reduced due to oscillations being limited to one plane only  $\,$
  - Longitudinal waves oscillate parallel to direction of travel of wave
    - There is no perpendicular plane to restrict the oscillations to
- Applications of polarisation
  - Polaroid sunglasses
    - Vertical transmission axis
    - Reduce glare by blocking (nearly all) horizontally polarised light reflected from water and glass
    - Only oscillations in the plane of the filter is allowed, other directions absorbed
    - Only transmits the vertical component of the unpolarised light from objects
       50% of the original light passes through
    - Reduces light from surface reflection more than light from objects so it is easier to see
  - EV and radio signals
    - Plane-polarised by the orientation of the rods on the transmitting aerial
    - The receiving aerial must be aligned in the same plane of polarisation to receive the signal at full strength

# 3.3.1.3 Principle of superposition of waves and formation of

### stationary waves

- The principle of superposition
  - When two or more waves arrive at one point, the resultant displacement is the sum of the displacement of each wave
- Constructive interference
  - Occurs when 2 waves have displacement in the same direction (arrives in phase)

- Destructive interference
  - Occurs when one wave has positive displacement and the other has negative displacement (arrives out of phase)
  - If the waves have equal but opposite displacements (π rad out of phase), total destructive interference occurs (zero amplitude)
- Stationary waves
  - Waves where there is no net transfer of energy and momentum from one point to another



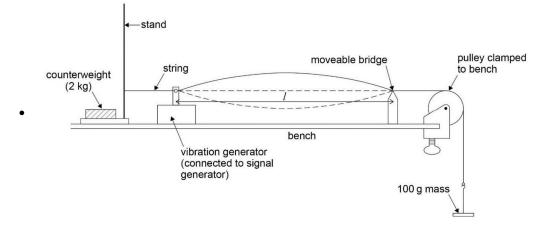
- Formation of stationary waves
  - Formed by the superposition of two or more progressive waves of the same frequency and wavelength and similar amplitudes passing through each other in opposite directions in the same medium
    - (The waves are emitted by ..., reflected through 180° by ...)
  - Amplitudes of the two waves do not need to be the same
  - Constructive interference occurs at where the waves meet in phase so antinodes are formed
  - Destructive interference occurs at where the waves meet completely out of phase so nodes are formed
- Nodes

•

- Fixed points in a stationary wave where the amplitude is minimum (usually zero)
- Distance between 2 nodes =  $\frac{\text{wavelength}}{2}$
- Antinode
  - Fixed point in a stationary wave pattern where the amplitude is maximum
  - The particles have **maximum energy** at the antinode
  - Progressive waves + stationary waves comparison

|   |                                                  | Stationary                                                                                                                                                                                                                                                              | Progressive                                                                                |  |
|---|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
|   | Energy &<br>momentum                             | <b>No net transfer</b> of energy from one point to another through space                                                                                                                                                                                                | Energy and momentum is transferred from 1 point to another                                 |  |
|   | Wavelength                                       | Wavelength = 2 × distance between<br>adjacent nodes                                                                                                                                                                                                                     | Wavelength = distance between 2 particles<br>at the same phase                             |  |
|   | Frequency                                        | All particles <b>except the particles at</b><br><b>the nodes</b> vibrate at the same<br>frequency                                                                                                                                                                       | All particles vibrate at the same frequency                                                |  |
| • | Amplitude                                        | The amplitude varies from minimum<br>(0) at the nodes to maximum at the<br>antinode                                                                                                                                                                                     | The amplitude is the same for each point along wave                                        |  |
|   | Phase difference<br>between 2<br>particles (rad) | Particles immediately on either side of<br>a node are moving in opposite<br>directions (180° out of phase)<br>Between adjacent nodes all particles<br>are <b>vibrate in phase</b><br>phase difference = $m\pi$<br>= number of nodes between 2<br>particles $\times \pi$ | phase difference $=\frac{2\pi d}{\lambda}$<br>Adjacent points vibrate with different phase |  |

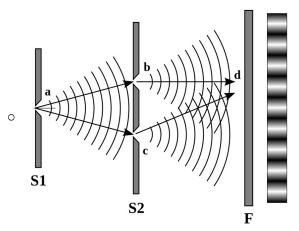
- Examples of stationary waves
  - Transverse stationary waves
    - String fixed at one end and the other end is fixed to a driving oscillator / plucked
      - Wave reflected at the fixed end of the string by 180°
      - Two waves superpose with each other
      - Both ends are fixed so both ends of the string are always nodes
    - Stationary microwaves
      - Reflected on a soft surface
      - The reflected end is an antinode, the emitter end is a node
      - A microwave probe can be used to find the nodes and antinodes
  - Longitudinal stationary waves
    - Sound waves
      - Speaker causes the wave → antinode
      - Open end: when air leaves the tube the pressure around it is lower so it expands
         → air pushed back to the tube → antinode
      - Close end: reflects the wave which reverses its displacement → cancelled out by upcoming wave → node
- Harmonics
  - The number of **antinodes** on the string
- First harmonic frequency / fundamental frequency
  - The lowest frequency at which a stationary wave forms
  - Forms a stationary wave with two nodes and a single antinode
  - Distance between adjacent nodes = half a wavelength
  - $\lambda = 2L$

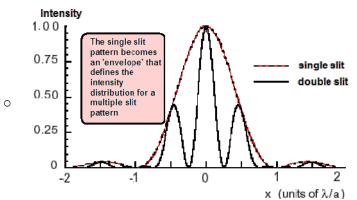

• 
$$f_0 = \frac{c}{2L} = \frac{1}{2L} \sqrt{\frac{T}{\mu}}$$
 (T = tension in the wire,  $\mu = \frac{m}{L}$  = mass per unit length)

- *n*th harmonic frequency =  $n \times$  first harmonic frequency =  $nf_1$
- nth harmonic frequency = nodes at a distance of  $\frac{L}{2}$
- Factors affecting the fundamental frequency
  - Mass per unit length
    - Tension
    - Length
    - Temperature

### Required Practical 1 - Stationary Waves

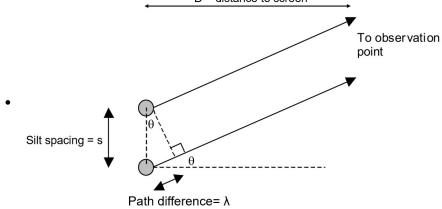
- Frequency vs length / tension / mass per unit length
  - Keep other variables constant
  - Use a signal generator + vibrator connected to signal generator to produce the vibrations
  - Measure length using ruler / tension by hanging mass at one end / mass per unit length by changing the wire


• Graph of 
$$f$$
 vs.  $\frac{1}{l}/f$  vs  $\sqrt{T}/f$  vs  $\frac{1}{\sqrt{\mu}}$ 




# 3.3.2 Refraction, diffraction and interference

# 3.3.2.1 Interference


- Coherence
  - Waves with a constant phase difference and the same frequency and wavelength
- Monochromatic
  - Light waves with a single wavelength only
- Lasers
  - Coherent and monochromatic
  - Usually used as sources of light in diffraction experiments as they form clear interference patterns
- Path difference
  - The difference in the distance travelled by two waves from their sources to where they meet
- Interference of monochromatic light
  - Path difference =  $n\lambda \rightarrow$  constructive interference, gives maximum intensity / reinforcement
  - Path difference =  $\left(n + \frac{1}{2}\right)\lambda \rightarrow$  destructive interference, gives 0 intensity / cancellation
- Interference of longitudinal waves (sound waves)
  - Constructive interference / reinforcement
    - $\circ$  Compression + compression / rarefaction + rarefaction  $\rightarrow$  greater volume
  - Destructive interference / cancellation
    - $\circ~$  Compression + rarefaction  $\rightarrow$  0 volume, used for noise cancellation
- Young's double slit experiment
  - Condition for light source
    - $\circ$  Monochromatic light source  $\rightarrow$  use colour filter
    - $\circ$  Coherent  $\rightarrow$  single silt between light source and double silt
      - Both slits will be illuminated from the same source so they receive light of the same wavelength
      - Paths to both slits are of constant length giving constant phase difference (normally in phase)
    - $\circ~$  Laser is both monochromatic + coherent so no colour filter / single slit needed
  - Procedure
    - Shine a coherent light source through 2 slits about the same size as the wavelength of laser light so the light diffracts / use 2 coherent sources
    - Each slit acts as a **coherent point source** making a pattern of light and dark fringes
    - Light fringes are formed where the light from both slits meet in phase and interferes constructively (path difference =  $n\lambda$ )
    - Dark fringes are formed where the light from both slits meets **completely out of phase** and **interferes destructively** (path difference =  $\left(n + \frac{1}{2}\right)\lambda$ )



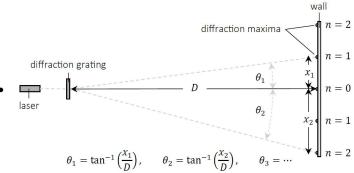


• (Bright) Fringe spacing •  $w = \frac{\lambda D}{\Delta m} = \frac{\text{wavelength} \times \text{distance between slit and screen}}{\lambda m}$ 





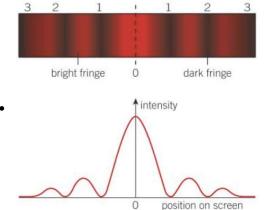
• 
$$\sin\theta = \frac{\lambda}{c}$$


• 
$$\tan \theta = \frac{w}{D}$$

- When  $\theta$  is small:  $\sin \theta \approx \tan \theta \approx \theta$  so  $\frac{\lambda}{s} = \frac{w}{D}$
- Hence  $w = \frac{\lambda D}{s}$
- Significance of Young's double slit experiment
  - Proved the wave nature of light since diffraction and interference are wave properties
  - Proved that EM radiation must act as a wave
  - Disproved the theories that light is formed of tiny particles
  - Knowledge and understanding of any scientific concept changes over time in accordance to the experimental evidence gathered by the scientific community
- Interference pattern with white light
  - Wider maxima
  - Less intense diffraction pattern with a central white fringe (all colours are present)
  - Alternating bright fringes which are spectra, violet is the closest to the central maximum and red is the furthest
- Safety precautions with lasers
  - Do not look directly at a laser beam even when it is reflected
  - Wear laser safety goggles
  - Don't shine the laser at reflective surfaces
  - Display a warning sign
  - Never shine the laser at a person

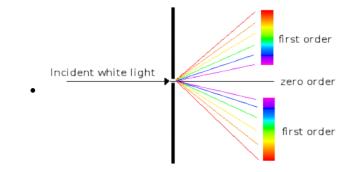
# Required practical 2

- Determining slit separation for double slit
  - Illuminate a double slit with a red laser of known wavelength,  $\lambda$ 
    - Project the interference pattern onto a white screen a distance, D, away from the slits
      - Measure *D* with a tape measure


- The fringe spacing, w, can be measured by measuring across several visible fringes
  - Measure *w* using a meter rule
  - $\circ$   $\,$  Find the mean fringe spacing
- Use the double slit formula,  $w = \frac{\lambda D}{s}$  and the measurements to determine the slit separation, s.
- Finding average grating spacing
  - Illuminate a diffraction grating with a known grating spacing with a red laser of known wavelength,  $\lambda$
  - Project the diffraction pattern onto a white screen at a distance *D* away from the grating.
     Measure *D* with a tape measure
  - Measure the angles of diffraction,  $\theta_n$  for multiple diffraction maxima
    - Measure distance from centre + use trigonometry
  - Plot a graph of  $\sin \theta_n$  against n
    - gradient =  $\frac{\lambda}{d}$
    - Use the gradient to determine the average grating spacing d and hence the average number of lines per mm, N

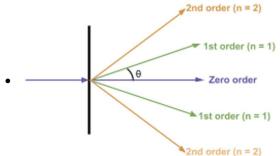


- Finding wavelength of light
  - Use a diffraction grating with a known average grating spacing and use the gradient to find the wavelength instead, otherwise same as above


# 3.3.2.2 Diffraction

- Single silt diffraction with monochromatic light
  - Central maximum with highest intensity
  - Decreasing intensity fringes on both sides, equally spaced
  - Central fringe is **twice the width** of other fringes




- Single silt diffraction with white (non-monochromatic) light
  - White central maximum
  - Distinct fringes shown with subsidiary maxima
  - Fringes on both sides show as spectrums
  - Red furthest, violet closest to the centre in subsidiary maxima





- Effect of using narrower slit / longer wavelength
  - Waves are more diffracted
  - Wider spacing
  - · Lower intensity of fringes as the energy is spread over a larger area
  - Fringe spacing for single slit diffraction
    - $w = \frac{\lambda \times \text{distance from slit to screen}}{a} = \frac{\lambda D}{a}$

- slit width Diffraction grating explanation •
  - A slide containing many equally spaced slits very close together
  - Light passing through each slit is diffracted
  - Light from different slits superpose
  - When the path difference between adjacent slits is a whole number of wavelengths the light waves arrive in phase and constructive interference occurs
  - Distances from the centre where maxima occur =  $d \sin \theta = n\lambda$  (d = distance between slits)
    - Angle of diffraction between each transmitted beam and the central beam increases if light of a longer wavelength or a grating with closer slits is used



- Comparison to double slit •
  - Much sharper and brighter image when monochromatic light is passed through
- White light incident
  - Spectrum is seen when white light is used
  - Different colours of light have different maxima positions
  - Line absorption spectra and line emission spectra can determine the elements in a substance (see photoelectric effect)
- Maximum number of orders visible

• Use 
$$\theta = 90^{\circ}$$

• 
$$n_{max} = \left| \frac{d}{\lambda} \right|$$

- Measuring wavelength of light
  - Diffraction patterns are measured using a spectrometer

• Angles measured accurate to 1 arc minute  $(\frac{1}{60}^{\circ})$ 

- It can be used to study light from any source and measure wavelengths very accurately
- Angle measured using a known wavelength → grating spacing calculated
- Grating can then be used to measure the wavelength of any light
- Applications of diffraction grating
  - Diffraction gratings can be used to observe and measure spectral lines
  - Line emission spectra can be used to identify elements in the vapour gas of the vapour lamp (similar to line absorption spectra)

## 3.3.2.3 Refraction at a plane surface

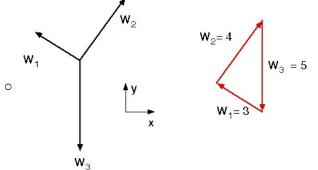
- Refraction
  - Change of direction and wavelength when a wave crosses a boundary and its speed changes
- Refractive index of a substance
  - $n = \frac{c}{c_s} = \frac{\sin i}{\sin r}$
  - Refractive index of air  $\approx 1$
  - Higher refractive index = light travels slower in the substance
- Refractive index of different colours
  - Longer wavelength = smaller refractive index = travels faster
  - Red has the smallest refractive index as it has the longest wavelength
  - Violet has the largest refractive index as it has the shortest wavelength
- Snell's law

•  $n_1 \sin \theta_1 = n_2 \sin \theta_2$ 

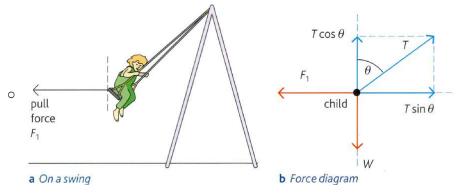
- Total internal reflection (TIR)
  - For ray going from more dense to less dense substance & the angle of incidence exceeds the critical angle
  - No refracted light wave since the angle of refraction > 90° so all the light is reflected
- Critical angle
  - The angle of incidence at which the angle of refraction is 90°

$$\sin \theta_c = \frac{n_2}{n_1} (n_2 < n_1)$$

- Pulse broadening
  - The length of a pulse is widened so it may overlap with the next pulse
  - Distorts the information in the final pulse
- Pulse absorption
  - Energy is absorbed by the fibre
  - Amplitude is reduced so information can be lost
- Solution to pulse absorption
  - Use more transparent core
  - Use pulse repeaters to regenerate the pulse before significant pulse broadening has taken place
- Material / spectral dispersion
  - Happens if white light is used instead of monochromatic light
  - Different wavelengths have different speeds due to different refractive indices within the core
    - $\circ$  Red light has the longest wavelength  $\rightarrow$  lowest refractive index, fastest
    - Violet light has the shortest wavelength  $\rightarrow$  highest refractive index, slowest
  - Causes pulse broadening
- Solution to material dispersion
  - Use monochromatic light
  - Use of shorter repeaters so that the pulse is reformed before significant pulse broadening has taken place
- Modal / multipath dispersion
  - Light waves entered at different angles of incidence so they are spread out
  - They travel different distances as they take different paths and arrive at the other end at different times
  - Causes pulse broadening
- Solution to modal dispersion
  - Use monomode fibre / narrower core
  - Use a cladding with its refractive index as close to the core as possible (larger critical angle  $\rightarrow$ less TIR)
- Optical fibre structure
  - Core
    - The transmission medium for EM waves to progress
  - Cladding
    - Protects the outer surface of the core from scratching which could lead to light leaving


the core

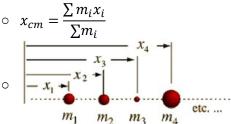
- Ensure that no light leaves the core
- $\circ~$  RI of cladding < RI of core
- Maintains quality/reduces pulse broadening
- Prevent crossover of signal to other fibres
- Refractive index of cladding
  - Similar RI between cladding and core
    - Larger critical angle  $\rightarrow$  less TIR  $\rightarrow$  less modal dispersion
  - RI of cladding much smaller than core
    - $\circ~$  Smaller critical angle (greater acceptance angle)  $\rightarrow$  less light escape  $\rightarrow$  more light collected
- Types of optical fibre
  - Step index fibre
    - The refractive index of each component increases moving from the outside to the centre of the fibre
    - $\circ~$  The refractive index within each component is  $\boldsymbol{uniform}$
  - Graded index fibre
    - Has a core that has a **gradually increasing** refractive index from outside to centre
- Applications of optical fibres
  - Endoscopes
  - Transmission of data for communications
- Producing coherent image
  - An incoherent bundle cannot be used to form an image because the ends of the individual fibres are arranged randomly so the image is incorrect
  - In a coherent bundle, the fibres have the same spatial position at each end of the bundle.
  - The light emitted from the end of the bundle is an **exact copy** of the incident light and **a single image** can be reproduced and analysed
  - Coherent bundles are expensive to manufacture so incoherent bundles are used for illumination
- Advantages of optical fibres
  - Less loss of strength
  - No interference
  - Greater bandwidth for more information per second
  - Increased security


# 3.4.1 Force, energy and momentum

## 3.4.1.1 Scalars and vectors

- Vector
  - Any physical quantity that has a direction as well as a magnitude
  - e.g. velocity, force / weight, acceleration, displacement
- Scalar
  - Any physical quantity that is not directional
  - e.g. speed, mass, distance, temperature
- Conditions for equilibrium
  - For an object to be in equilibrium, the sum of all the forces acting on an it must be 0
  - e.g. 3 forces form a closed triangle

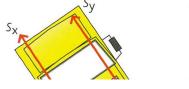


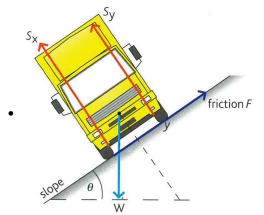

- Explaining what forces balance each other
  - e.g. child on swing
    - $\circ~$  Pull force balances with the  $horizontal \ component$  of tension
    - Weight balances with the **vertical component** of tension



### 3.4.1.2 Moments

- Moment formula
  - Moment of a force about a point
    - = force × perpendicular distance from the pivot point to the line of action of the force
- Couple
  - A pair of equal and opposite parallel / coplanar forces acting on a body along different points
  - Exerts a turning force on a body
  - Moment of couple
    - = force × perpendicular distance between the lines of action of the forces
- Principle of moments
  - For an object in equilibrium, there is no resultant turning forces about any pivot
- Centre of mass
  - The point at which an object's mass / weight acts
  - The point through which a single force on the body has no turning effect
- Finding centre of mass
  - Uniform regular solid


- Centre of mass at the centre
- Non-regular card
  - Hang object (and plumb line) by first pivot
  - $\circ$  Draw first line vertically below pivot (by sketching a plumb line hang from the pivot)
  - $\circ$   $\,$  Hang object (and the plumb line) by second pivot
  - $\circ~$  Draw second line vertically below pivot
  - $\circ$   $\;$  Intersection of lines is the centre of mass
- Multiple mass on a rod




- Equilibrium stability
  - Stable
    - Object returns to its equilibrium position if displaced (a little)
    - Wide base, low centre of gravity
    - $\circ$   $\,$  Tilted for a certain angle before centre of mass crosses the pivot point and topple
    - Unstable
      - Object does not return to its equilibrium position if displaced
      - Topple immediately after being tilted
    - Neutral
      - Stay in place when left alone
      - Stay in the new position when moved
      - $\circ~$  The object's centre of mass is always exactly over the point which is its 'base'
- Tilting / topping
  - Tilting
    - $\circ~$  An object resting on a surface is acted on by a force that raises it up on 1 side
    - For an object to tilt:  $Fd > \frac{Wb}{2}$  (b = width of base)



- Toppling
  - Tilted too far
  - $\circ~$  Line of action of its weight passes beyond the pivot
- Two support problems
  - When an object is in equilibrium and supported by 2 points then the 2 supports add up to the weight of the object
  - The support closer to the centre of mass provides more of the support force
- On a slope
  - The line of action of weight must lie inside the base of the object to prevent tilting





- $S_x > S_y$  since x is lower than y (more moment is needed to be produced from x as it is closer to the centre of mass)
- Conditions for equilibrium
  - No resultant force
  - No resultant moment / torque (the principle of moments must apply)

### 3.4.1.3 Motion along a straight line

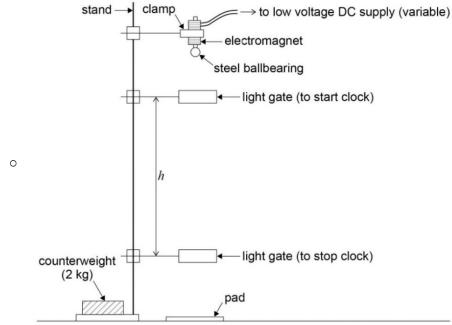
• Terms

|   | Term                      | Definition                                                                                        |  |  |  |  |
|---|---------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|
|   | Speed                     | A scalar quantity describing how quickly an object is travelling                                  |  |  |  |  |
|   | Displacement (s)          | The overall distance travelled from the starting position (includes a direction, vector quantity) |  |  |  |  |
|   | Velocity ( <i>v</i> )     | Rate of change of displacement (= $\frac{\Delta s}{\Delta t}$ )                                   |  |  |  |  |
| , | Instantaneous<br>velocity | The velocity of an object at a specific point in time                                             |  |  |  |  |
|   | Average velocity          | The velocity of an object over a specified time frame                                             |  |  |  |  |
|   | Acceleration ( <i>a</i> ) | Rate of change of velocity (= $\frac{\Delta v}{\Delta t}$ )                                       |  |  |  |  |
|   | Uniform<br>acceleration   | The acceleration of an object is constant                                                         |  |  |  |  |

- SUVAT equations
  - For uniform acceleration
  - v = u + at

• 
$$s = \left(\frac{u+v}{2}\right)t$$
  
•  $s = ut + \frac{1}{2}at^2$   
•  $s = vt - \frac{1}{2}at^2$   
•  $v^2 = u^2 + 2as$ 

• 
$$v^2 = u^2 + 2a$$


Motion graphs •

|   |          | Displacement-time | Velocity-time            | Acceleration-time  |
|---|----------|-------------------|--------------------------|--------------------|
| • | Gradient | Velocity          | Acceleration             | /                  |
|   | Area     | /                 | (Change in) displacement | Change in velocity |

- Free fall
  - *u* = 0
  - *a* = *g*
- Light gate
  - length of the object time for the light to be obscured • speed through the light gate =

## Required practical 3 - determining g

- Equipment
  - Stand
    - Bosses and clamps
    - Electromagnet
    - Steel ball bearing
    - Light gate
    - Timer (connected to the light gate)
    - Soft cushion pad
- How to determine g by free fall
  - Set up the apparatus as shown

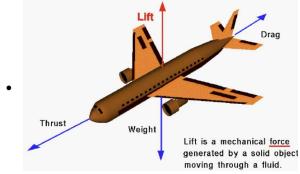


- The position of the lower light gate should be adjusted such that the height *h* is 0.500m, measured using the metre rule
- Turn on the electromagnet and attach the ball bearing
- Reset the timer to zero and switch off the electromagnet
- Read and record the time t on the timer for the ball to pass through the 2 light dates
- Reduce *h* by 0.050m by moving the **lower light gate** upwards and repeat this, reducing h by 0.050m each time until *h* reaches 0.250m (at least 5-10 values of *h*)
- Repeat the experiment twice more for each value of h and find and record the mean t for each h
- Plot a graph of  $\frac{2h}{t}$  against t and draw a line of best fit ( $\frac{2h}{t} = 2u + gt$ )
- Gradient = g, y-intercept = 2u
  - (You might want to draw lines of maximum and minimum gradient and find the mean gradient)
- Errors
  - Systematic
    - Residue magnetism after the electromagnet is switched off may cause t to be recorded as longer than it should be
    - $\circ~$  Air resistance reduces the value of g determined
  - Random
    - $\circ$  Large uncertainty in *h* from using a metre rule with a precision of 1 mm
    - $\circ$  Parallax error from reading h
    - The ball may not fall accurately down the centre of each light gate (less time obscuring the light)
    - Random errors are reduced through repeating the experiment for each value of h at least 3-5 times and finding an average time, *t*
- Safety

- The electromagnetic requires current
  - No water near it
  - Only switch on the current to the electromagnet once everything is set up to avoid electrocution
- A cushion or a soft surface must be used to catch the ball-bearing so it doesn't roll off / damage the surface
- The tall clamp stand needs to be attached to a surface with a G clamp so it stays rigid

## 3.4.1.4 Projectile motion

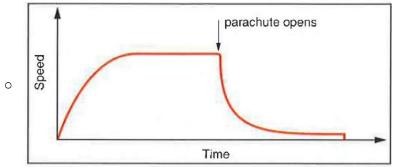
- Motion equations ignoring air resistance
  - $v_x = u \cos \theta$
  - $x = ut \cos \theta$
  - $v_y = u \sin \theta gt$


• 
$$y = ut\sin\theta - \frac{1}{2}gt^2$$

- Range and maximum height formula (not required but useful)
  - Maximum height =  $\frac{u^2 \sin^2 \theta}{2g}$
  - Horizontal range =  $\frac{u^2 \sin x}{a}$

• Time to maximum height = 
$$\frac{u\sin\theta}{a}$$

• Time back to starting height = 
$$\frac{\frac{g}{2u\sin\theta}}{g}$$


- Friction
  - A force which opposes the motion of an object
  - AKA drag / air resistance
  - Convert KE into other forms of energy such as heat and sound (work done on the surface / fluid)
- Lift
  - An upward force which acts on objects travelling in a fluid
  - Caused by the object creating a change in the direction of the fluid flow
  - Happens if the shape of the projectile causes the air to flow faster over the top of the object than underneath it
    - Pressure of air on the top surface < pressure of the air on the bottom surface
    - Produces a net upward force
  - Acts perpendicular to the direction of fluid flow



- Effect of air resistance (friction)
  - Air resistance / drag force acts in the opposite direction of motion of the projectile
  - Increases as the projectile's speed increases
  - Has both horizontal and vertical components
  - Reduces both the horizontal speed of the projectile and its range
  - Reduces the maximum height of the projectile if its initial direction is above the horizontal and makes its descent steeper than its ascent



- Terminal velocity
  - Occurs where the frictional forces acting on an object and the driving forces are equal
  - No resultant force  $\rightarrow$  no acceleration  $\rightarrow$  travels at constant speed / velocity
- Terminal velocity for objects falling
  - Start initially with free fall (uniform acceleration) briefly
    - $\circ$   $\;$  The only force acting on the object is weight
    - (Other forces are very small and negligible)
  - Speed still increases but acceleration decreases
    - Air resistance increase because speed increase
    - Resultant force gets smaller
  - Eventually the object falls in uniform velocity (reached terminal velocity)
    - $\circ$   $\;$  Weight balanced exactly by resistive force upwards  $\;$
    - Resultant force = 0 so there is no acceleration
    - $\circ~$  Air resistance is not increasing anymore because speed is not increasing
    - Potential energy of the object is transferred to the internal energy of the fluid by drag forces
  - Effect of parachute
    - Increase air resistance due to larger area perpendicular to direction of travelling
    - Resultant force upwards so deceleration
    - Air resistance falls as speed falls
    - Decelerates until air resistance get as big as speed so the object falls at uniform speed again
  - Graph
    - Gradient should start with gradient **9.81 m s<sup>-2</sup>** not bigger than **9.81 m s<sup>-2</sup>**



- (Same to other situations moving through a fluid resistance increase until the maximum speed is reached)
- Factors affecting terminal velocity
  - Higher mass  $\rightarrow$  higher acceleration  $\rightarrow$  higher terminal velocity
  - Higher volume / CSA  $\rightarrow$  more air resistance  $\rightarrow$  less acceleration  $\rightarrow$ ' lower terminal velocity

# 3.4.1.5 Newton's laws of motion

- Newton's 1st law of motion
  - If no resultant external force are acting on a body, it will
    - $\circ~$  If at rest, remain at rest
    - If moving, keep moving at constant speed in a straight line
  - Newton's 2nd law of motion
    - The acceleration of an object is proportional to the resultant force experienced by the object
    - Acceleration is in the same direction as the resultant force
    - resultant force = mass × acceleration
    - F = ma
- Newton's 3rd law of motion

When two objects interact, they exert equal and opposite forces on each other

### 3.4.1.6 Momentum

- Momentum calculation
  - Momentum = mass × velocity
  - p = mv
- The principle of conservation of momentum
  - Momentum is always conserved for a system of interacting objects provided that no external resultant force acts on the system
  - Total final momentum = total initial momentum
- Types of collisions
  - Elastic
    - There is no loss of kinetic energy during the collision
    - Both momentum and KE are conserved
    - $\circ m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$
  - Inelastic: only momentum is conserved, some KE is lost
    - Stick together:  $m_1u_1 + m_2u_2 = (m_1 + m_2)v_{1+2}$
    - Colliding objects have less KE after the collision than before the collision
- Explosion
  - $m_1v_1 + m_2v_2 = 0$
  - KE of the objects has increased
- Newton's 2nd law of motion using momentum
  - The rate of change of momentum of an object is equal to the resultant force on it
    - $F = \frac{\Delta(mv)}{\Delta t}$
- Impulse
  - The change in momentum
  - Impulse =  $F\Delta t = \Delta(mv)$
- Force-time graph
  - Area =  $F\Delta t$  = change in momentum
- Stopping distances
  - Thinking distance  $s_1$  = speed × reaction time =  $ut_0$
  - Braking distance  $s_2 = \frac{u^2}{2a}$
  - Stopping distance =  $s_1 + s_2 = ut_0 + \frac{u^2}{2a}$
- Contact and impact time
  - $2 \times$  distanced moved by cars 2*s* • impact time =  $\frac{23}{u+v}$  = initial velocity + final velocity (of the same car)
  - $a = \frac{v u}{t}$

$$F = ma = \frac{mv - mu}{mv - mu}$$

$$F = ma = \frac{t}{t}$$

- (These calculations only need to be applied onto one car)
- Why airbags / seatbelts / etc. work
  - With no seat belt / airbag / etc. the person would not start to change their momentum until they hit the dashboard or windscreen
  - The person comes to stop quickly (short impact time)
    - Large change of momentum in a short time = large resultant force = large injury (F = $\Delta(mv)$
  - With the seatbelt / airbag / etc. they will have a longer impact time (comes to stop more slowly)
    - They will experience a smaller resultant force and so less injury

### 3.4.1.7 Work, energy and power

Work

- Work done = force × distance moved in the direction of the force
- Unit = joules (J)
- $W = Fs \cos \theta = \text{force} \times \text{displacement} \times \text{angle between force and direction of motion}$
- Force-displacement graphs
  - Area under line = work done
- Power
  - Rate of doing work = rate of energy transfer

• 
$$P = \frac{\Delta E}{\Delta t} = \frac{\Delta W}{\Delta t} = Fv \cos \theta = \text{driving force } \times \text{velocity} \times \cos \theta$$

- Efficiency
  - Efficiency =  $\frac{\text{Useful work done}}{\text{Total energy input}} = \frac{\text{Useful energy output}}{\text{Total energy input}} = \frac{\text{Useful power output}}{\text{Total power input}}$

  - Can be expressed as a percentage

# 3.4.1.8 Conservation of energy

- Principle of conservation of energy
- Energy cannot be created or destroyed but transferred from one store to another
- Kinetic energy

• 
$$E_k = \frac{1}{2}mv^2$$

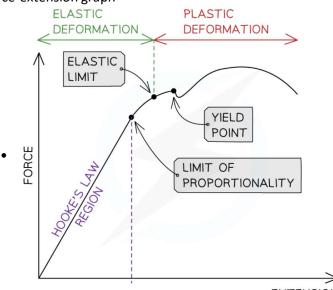
- (Gravitational) potential energy
  - $E_p = mg\Delta h$

# 3.4.2 Materials

# 3.4.2.1 Bulk properties of solids

- Density
  - Mass per unit volume

• 
$$\rho = \frac{m}{V}$$


- Hooke's law
  - The extension of the material is directly proportional to the load applied up to the limit of proportionality
  - $F = k\Delta L$  = spring constant (stiffness) × extension
- ★ Springs combined together
  - Springs in parallel

$$\circ \quad k = k_1 + k_2 + \dots + k_n$$

• Springs in series

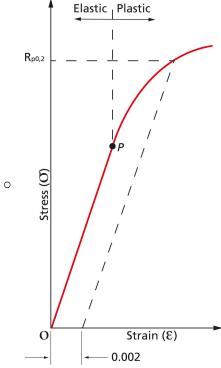
$$\circ \ \frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2} + \dots + \frac{1}{k_k}$$

- Energy transfer in springs
  - Hung vertically and stretched: KE / GPE  $\rightarrow$  elastic strain energy
  - Force removed: elastic strain energy  $\rightarrow$  KE  $\rightarrow$  GPE
- Force-extension graph

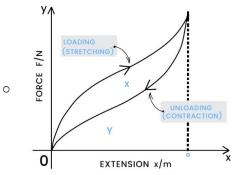


#### EXTENSION

- Limit of proportionality: the point beyond which Hooke's Law is no longer true
- Elastic limit: the point beyond which the material will be permanently deformed, right after limit of proportionality
- Brittle materials: extend very little before it breaks / fractures at a low extension
- Plastic materials: experience a large amount of extension as the load is increased, especially
  after the elastic limit
- Types of stretches
  - Elastic
    - Material returns to original shape once force is removed
    - $\circ~$  All the work done is stored as elastic strain energy
  - Plastic
    - Material does not return to original shape once force is removed
    - Work is done to move atoms apart so some energy is not stored as elastic strain energy but dissipated as heat
- Types of deformation
  - Tensile deformation
    - Deformation that **stretches** an object

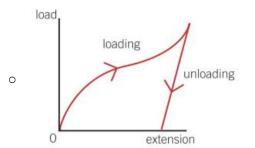

- Compressive deformation
  - Deformation that **compresses** an object
- Strain energy

•

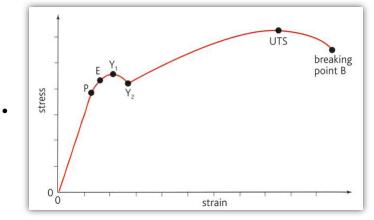

- The area under the force-extension graph = work done to stretch the energy = strain energy
- Elastic strain energy in springs

• 
$$E_p = \frac{1}{2}F\Delta L = \frac{1}{2}k(\Delta L)^2$$
 = area under force-extension graph

- Loading & unloading curve for different materials
  - Area between loading and unloading curves = work done to permanently deform the material or dissipated as heaat
  - Plastic deformation
    - When a material is stretched beyond its elastic limit it will not return to its original length after the load is removed (permanent extension / deformation)
  - Metal wire
    - Loading (the proportional part) + unloading curves have the same gradient
    - Gradient of the unloading line remains the same because the stiffness only changes with material



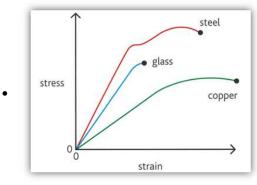

- Extension of elastic materials graph e.g. seatbelts
  - Loading and unloading curves are not linear & not the same
  - $\circ~$  Returns to the original length when unloaded




- Extension of plastic materials graph
  - $\circ$   $\;$  The loading curve is not linear
  - $\circ~$  During unloading the change in length is greater for a given change in tension
  - Does not return to its original strength

load loading




#### • Stress-strain curves



- Before limit of proportionality (P)
  - Gradient = Young modulus of the material
  - Tensile stress ∝ tensile strain
  - The material obeys Hooke's law
- Elastic Limit (E)
  - Up to this point the material returns to its original length when the load acting on it is completely removed
  - Beyond this limit the material doesn't return to its original position after unloading and a plastic deformation starts to appear in it
- Yield point (Y<sub>1</sub> and Y<sub>2</sub>)
  - o The stress at which the material starts to deform plastically
  - After the yield point is passed, **plastic deformation occurs**
  - $\circ$  2 yield points: upper (Y<sub>1</sub>) + lower yield point (Y<sub>2</sub>)
    - At the upper yield point the wire weakens temporarily
      - At the lower yield point a small increase in stress causes a large increase in strain and the wire undergoes plastic flow
- Ultimate tensile stress (UTS)
  - The maximum stress a material can withstand
  - After UTS the wire loses its strength, extends and becomes narrower at its weakest point

#### • Plastic deformation stops

- Fracture / breaking point (B)
  - The point in the stress-strain curve at which the material breaks / fractures
- Stress / strain curve for different materials



• Brittle materials (e.g. glass) snap without noticeable yield

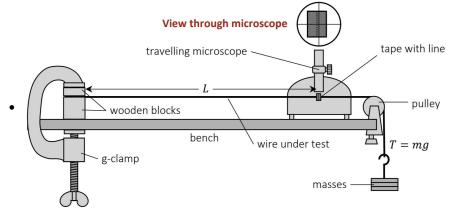
• Ductile materials can be drawn into a wire (e.g. copper)

### 3.4.2.2 The Young modulus

- Tensile strain
  - Extension per unit length

$$\sigma = \frac{F}{I}$$

 $\overline{A}$ Tensile stress


•

- The force per unit cross-sectional area
- $\varepsilon = \frac{\Delta L}{L}$
- Young modulus •

  - $\frac{\text{tensile stress}}{\text{tensile strain}} = \frac{FL}{A\Delta L}$ E =
  - Unit = Pascal (Pa)
  - Measures the stiffness of the material (higher Young modulus = stiffer material)
  - \* Young modulus is specific to the material and doesn't change
  - \* Young modulus = gradient of the straight line part of the stress strain graph

### Required practical 4 - determining the Young modulus

- Method
  - Measure the initial length of wire with a ruler
  - · Measure the initial diameter of wire with a micrometer
    - Measure in several places and take mean
    - Diameter is very small so it cannot be measured by a ruler but only with a micrometer
  - Mark a cross onto the wire with a tape
  - Align the travelling microscope with the cross
    - Extension can be very small so a microscope is needed
  - Add load and align the travelling microscope with the cross again
  - Read off the extension of the wire
  - Repeat for a range of loads
  - Repeat up to the limit of proportionality / elastic limit
  - Repeat the experiment 2 more times for each value of load and calculate mean extension
  - · Calculate tensile stress and strain for each load value
  - Plot a graph of stress against strain
  - Young modulus = gradient of the linear part of the graph



- Measurements •
  - Length of the wire between clamp and mark (metre rule)
  - Diameter of the wire (micrometer, measure several positions + mean taken)
  - Extension of wire for a known mass (by moving travelling microscope and checking the scale)
  - Repeat readings for increasing load

# 3.5.1 Current electricity

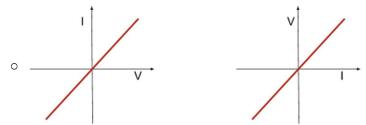
# 3.5.1.1 Basics of electricity

- Charge
  - Measured in coulomb (C)
  - $\star \cdot$  Charge of 1 electron = -1.60 × 10<sup>-19</sup> C
  - Scalar quantity
- Electric current (I)
  - The rate of flow of charge

$$I = \frac{\Delta Q}{\Delta t}$$

- Potential difference (V)
  - The energy transferred per unit charge between two points in a circuit
  - When a charge of 1 C passes through a p.d. of 1 V, it does 1 J of work

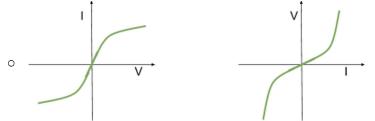
• 
$$V = \frac{W}{Q}$$


- Resistance (R)
  - A measure of how difficult it is for charge carriers to pass through a component

• 
$$R = \frac{V}{I}$$

- Capacity
  - A measure of the total amount of charge which the battery can push around a circuit
  - Commonly measured in ampere-hours (A h)
  - 1 Ah = a current of 1 A can flow for 1 hour = 3600 C
- Types of charge carriers
  - Insulator
    - $\circ$  Each electron is attached to an atom and cannot move away from the atom
  - Metallic conductor
    - $\circ$   $\,$  Most electrons are attached to metal ions but some are delocalised
    - Delocalised electrons can carry charge through the metal
    - When a voltage is applied across the metal these conduction electrons are attracted towards the positive terminal of the metal
  - Semiconductor
    - Number of charge carriers increase with an increase of temperature (electrons break free from the atoms of the semiconductor)
    - Resistance fall as temperature rise

# 3.5.1.2 Current-voltage characteristics

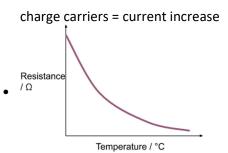

- Ohm's law
  - The current through a conductor is directly proportional to the potential difference across the conductor provided that temperature and other physical conditions remain constant
  - V = IR
  - \* Not the definition of voltage
- Types of different conductors
  - Ohmic conductor
    - Follows Ohm's law
    - Constant resistance as long as temperature and other physical conditions remain constant
    - Current-voltage graph will look like a straight line through the origin



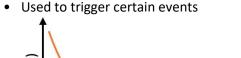
- Semiconductor diode
  - Only lets current flow in one direction, converts AC to DC
  - Forward biased: allow current to flow easily past the threshold voltage (smallest voltage needed to allow current to flow)
  - Reverse biased: the resistance of the diode is extremely high so that only a very small current can flow

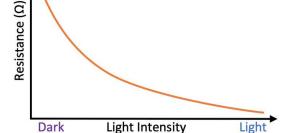


- Non-ohmic conductors e.g. filament lamp
  - Ohm's law obeyed initially (a straight line initially)
  - Does not have a constant resistance
  - As voltage increases current increases
  - $\circ$   $\,$  More electrons flow through the wire per second
  - Current heats filament
  - $\circ~$  Higher rate of collisions between ions in the lattice structure and electrons
  - Conducting electrons slow down more and lose more kinetic energy so current falls and resistance increases
  - $\circ~$  Rate of increase of current is less than if resistance was constant
  - As current or voltage increases resistance increases so the gradient is not constant
  - Negative voltage and current produces the same effect

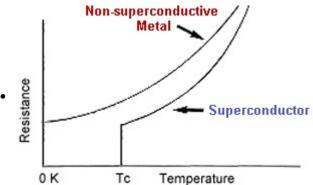



#### ★ Assumptions


- Assume ammeters and voltmeters are ideal unless otherwise stated
- Ammeters can be assumed to have zero resistance
- Voltmeters can be assumed to have infinite resistance


### 3.5.1.3 Resistivity

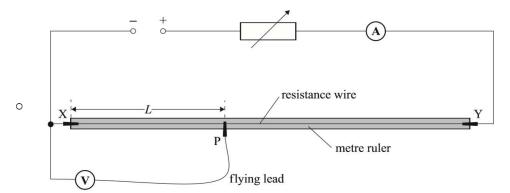
- Resistivity (ρ)
  - Resistance per unit length × area of cross section
  - $\rho = \frac{RA}{L}$  or  $R = \frac{\rho L}{A}$
  - Unit =  $\Omega$  m
- Effect of temperature on the resistance of metal conductors
  - When the temperature of a metal conductor increases its resistance will increase
  - Metal ions gain KE from heating and vibrate more so they take up more space
  - More collisions between electrons and metal ions per second so they slow down more
  - Current falls so resistance increases
- Effect of temperature on the resistance of thermistors
  - When the temperature of a thermistor increases, its resistance will decrease
  - Increasing the temperature of a thermistor causes electrons to be emitted from atoms = more




- Application of thermistors
  - Temperature sensors
    - Trigger an event to occur once the temperature drops below or reaches a certain value
    - e.g. turn on the heating once room temperature drops below a specific value
- LDR
  - Resistance decreases as light intensity increases



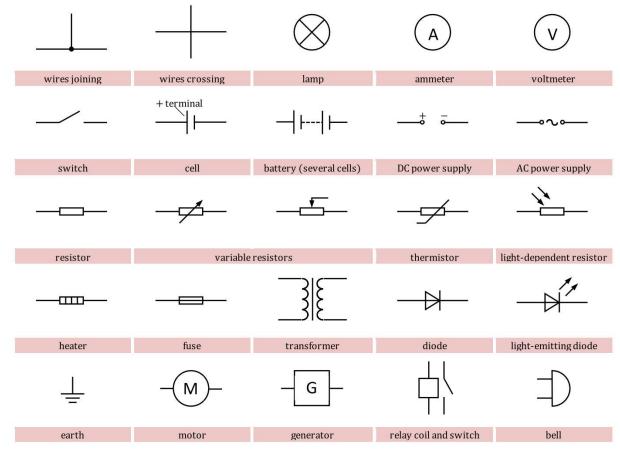



- Superconductivity
  - A property of certain materials which have **zero resistivity** at and below a critical temperature  $(T_c)$  which depends on the material
  - Resistivity decreases as temperature decreases
  - Zero resistivity = zero resistance
  - Critical temperature normally extremely low (close to 0 K)

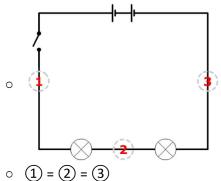


- Applications of superconductors
  - Power cables
    - Reduce energy loss due to heating to zero during transmission
  - Production of strong magnetic fields
    - Do not require a constant power source
    - Used in maglev trains / certain medical applications
- Resistance of a wire
  - Normally assumed to be 0 so no PD is lost between 2 points on a wire with no resistors between them
  - The assumption can break down if the current is high / resistance in the rest of the circuit is low

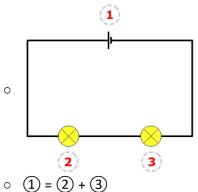
# Required practical 5 - determining wire resistivity


- Method
  - Set up the circuit as shown

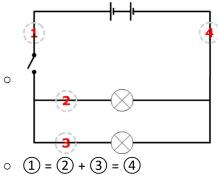



- Connect the flying lead to the wire so that 0.10 m of the wire has its resistance measured
- Switch on the power supply and adjust the voltage of it so that the current in the circuit is 0.50 A
- Turn off the power supply between readings so the wire does not heat up and increase in resistance
- Measure and record the length and voltage across the wire by taking reading on the voltmeter
- Move the flying lead to increase the length by 0.10 m and repeat the measuring process for lengths up to 1.00 m
- Repeat the experiment twice for each reading and calculate an average voltage at each length
- Calculate resistance at each length by  $R = \frac{V}{r}$
- Plot a graph of resistance against length
- Resistivity = gradient × cross sectional area (gradient =  $\frac{\rho}{4}$ )
- Errors
  - Random Errors
    - The current flowing through the wire will cause its temperature to increase and increase its resistance and resistivity
      - Only allow small currents to flow through the wire so the temperature is kept constant and low
      - The power supply should be switched off between readings so its temperature doesn't change its resistance
    - Make at least 5-10 measurements of the diameter of the wire with the micrometer screw gauge and calculate an average diameter to reduce random errors in the reading
    - The wire should be free from kinks and held straight so the measurement of the length is as accurate as possible.
  - Systematic errors
    - Zero error when measuring wire length
- Safety Considerations
  - When there is a high current, and a thin wire, the wire will become very hot
  - Make sure never to touch the wire directly when the circuit is switched on
  - Switch off the power supply right away if you smell burning
  - Make sure there are no liquids close to the equipment, as this could damage the electrical equipment

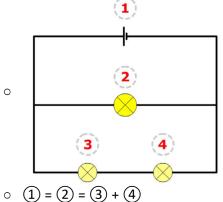
# 3.5.1.4 Circuits


• Circuit symbols




- Series circuit properties
  - The current is the same at all points




• The sum of potential differences across the components is equal to the total EMF of the power supply



- Parallel circuit properties
  - The current splits up
    - $\circ$   $\,$  Some of it going one way and the rest going the other  $\,$
    - $\circ$   $\;$  Total current in the circuit = sum of the currents in the branches



• Total voltage of a parallel circuit has the same value as the voltage across each branch



- Total voltage of cells
  - Cells joined in series

$$V_T = V_1 + V_2 + V_3 + \cdots$$

- Identical cells joined in parallel
  - Total voltage = voltage of one cell as current is split equally between branches so overall pd is the same as if the total current was flowing through a single cell

• 
$$V_T = V_1 = V_2 = V_3 = \dots = \varepsilon - \frac{Ir}{n}$$

$$= emf - \frac{total current of the circuit \times internal resistance of each cell$$

#### number of cells

- Total internal resistance = calculated in the same way as other parallel circuits
- $\circ~$  Act like one cell but with reduced internal resistance
- Advantages of cells joined in parallel
  - Reduce the combined internal resistance of the cells reduce lost volts
  - Less power drawn from each cell so it lasts longer
  - Total resistance calculation
    - In series

•

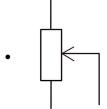
$$\circ \quad R_T = R_1 + R_2 + R_3 + \dots + R_n$$

• In parallel

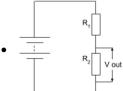
$$\circ \ \frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

• Power (P) and energy (E)

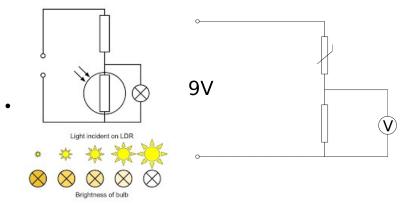
$$P = IV = \frac{V^2}{V} = I^2 R$$


$$P = IV = \frac{R}{R} = I$$

$$E = Pt = IVt$$


- Kirchhoff's laws
  - In DC circuits
  - Kirchhoff's first law (conservation of charge)
    - The total current flowing into a junction is equal to the current flowing out of that junction
    - $\circ$   $\,$  No charge is lost at any point in the circuit
  - Kirchhoff's second law (conservation of energy)
    - $\circ$   $\,$  The sum of all the voltages in a series circuit is equal to the battery voltage
    - No energy is lost at any point in a circuit

## 3.5.1.5 Potential divider


- Potential divider
  - Circuits which produce an output voltage as a fraction of its input voltage
  - Has several resistors in series connected across a voltage source
  - Used to supply constant or variable potential difference from a power supply



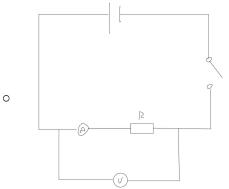
- Using variable resistors
  - Potential divider supply a variable pd
  - Use variable resistor as one of the resistor in series
  - Vary the resistance across = vary pd output



- Using thermistor / LDR
  - Resistance decreases as temperature / light intensity increases
  - Used to trigger certain events



- Change in voltage across one resistor
  - Resistance stayed constant
    - $\circ~$  Current increase / decrease  $\rightarrow$  voltage across changes
  - Resistance changed
    - $\circ$   $\,$  The resistor has increased / decreased share of total resistance
    - New current is the same in both resistors
    - $\circ~$  The resistor gets a larger / smaller share of the EMF


# 3.5.1.6 Electromotive force and internal resistance

- Internal resistance of batteries
  - The resistance of the materials within the battery
  - Caused by electrons colliding with atoms inside the battery so some energy is lost before electrons leave the battery
  - Represented as a small resistor inside the battery
- Terminal pd (V)
  - Pd across the resistor(s)
  - $V = \varepsilon Ir$
- Lost volts (v)
  - Pd across the internal resistor in the battery

- = energy wasted by the cell per coulomb of charge
- Electromotive force
  - The energy converted (from chemical) to electrical energy by a cell for per coulomb of charge that passes through it
  - Can be measured by measuring the voltage across a cell using a voltmeter when there is <u>no</u> <u>current</u> running through the cell
  - *E* electrical energy transferred
  - $\mathcal{E} = \frac{1}{Q} = \frac{1}{\frac{1}{Q}}$  charge
  - $\varepsilon = V + v = I(R + r) = \text{current} \times (\text{load resistance} + \text{internal resistance})$

# Required practical 6 - finding the EMF and internal resistance of a cell

- Method
  - Set up the circuit as shown above with 2 (1.5V) cells connected in series



- Connect a voltmeter across the resistor to measure the load voltage
- Close the switch so that the current flows in the circuit
- Record the ammeter and voltmeter readings
- Open the switch to cut off the current and prevent heating in the circuit
- Replace the resistor with a different resistor with a different resistance and repeat the measuring process
- Use at least 5 different resistors with different resistances
- Repeat the experiment 2 more times for each resistor and calculate the mean current and voltage
- Plot a graph of load voltage against current
- EMF of the cell is the y-intercept of the graph while the internal resistance of the cell is the magnitude of the gradient of the graph
- Safety
  - Another resistor can be included in series with the other to avoid high currents which could be dangerous and make the wires get hot
- Improvements / controls
  - Only close the switch for as long as it takes to read off each pair of readings
    - Prevent the internal resistance of the battery or cell from changing during the experiment due to heating
  - Use fairly new batteries/cells
    - The emf and internal resistance of run down batteries can vary during the experiment