

IGCSE Physics Equations

Xingzhi Lu

May 2024

1 Measurements and units

Prefix	Meaning
G (giga)	10^9
M (mega)	10^6
k (kilo)	10^3
d (deci)	10^{-1}
c (centi)	10^{-2}
m (milli)	10^{-3}
μ (micro)	10^{-6}
n (nano)	10^{-9}

Density: $\rho = \frac{m}{v}$ / density = $\frac{\text{mass}}{\text{volume}}$

2 Forces and motion

Speed / velocity: $v = \frac{d}{t}$ / speed = $\frac{\text{distance}}{\text{time}}$, velocity = $\frac{\text{displacement}}{\text{time}}$

Acceleration: $a = \frac{v - u}{t}$ / acceleration = $\frac{\text{change in velocity}}{\text{time}}$

Weight: $W = mg$ / weight = mass $\times g$

Resultant force: $F = ma$ / resultant force = mass \times acceleration

Resultant force by momentum: $F = \frac{mv - mu}{t}$ / resultant force = $\frac{\text{change in momentum}}{\text{time}}$

Elastic collision: $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$

Stick together after collision: $m_1u_1 + m_2u_2 = (m_1 + m_2)v_{1+2}$

Centripetal force (do not need for exam): $F = \frac{mv^2}{r}$

3 Forces and pressure

Moment: moment = force \times perpendicular distance from pivot

Spring constant: $F = kx$ / load = spring constant \times extension

Pressure: $P = \frac{F}{A}$ / pressure = $\frac{\text{force}}{\text{surface area in contact}}$

Pressure at a depth in liquid: $P = \rho gh$ / pressure at a depth = density of liquid $\times g \times$ depth

Boyle's law: $p_1V_1 = p_2V_2$

4 Forces and energy

Work: $W = fd$ / work done = force \times distance

GPE: $GPE = mgh$ / gravitational potential energy = mass $\times g \times$ height

KE: $E_k = \frac{1}{2}mv^2$ / kinetic energy = $\frac{1}{2} \times$ mass \times speed²

Efficiency: efficiency = $\frac{\text{useful work done}}{\text{total energy input}} = \frac{\text{useful energy output}}{\text{total energy input}} = \frac{\text{useful power output}}{\text{total power input}}$

Power: $P = \frac{E}{t}$ / speed = $\frac{\text{energy transferred}}{\text{time}} = \frac{\text{work done}}{\text{time}}$

5 Thermal effects

Kelvin temperature: Kelvin temperature = Celsius temperature + 273

Absolute zero: 0 K / -273°C

Pressure law: $\frac{P_1}{T_1} = \frac{P_2}{T_2}$

Charles' law: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$

* Temperatures should be in Kelvin (SI unit)

Specific heat capacity: $\Delta E = mc\Delta T$ / energy transferred = mass \times specific heat capacity \times temperature change

Specific heat capacity of water: 4200 J/kg $^{\circ}\text{C}$

Latent heat unit: J/kg, KJ/kg, etc.

6 Waves and sounds

Wave speed: $v = f\lambda$ / wave speed = frequency \times wavelength

Speed of sound: gas ≈ 340 m/s, liquid ≈ 1500 m/s, solid ≈ 5000 m/s

7 Rays and waves

Refractive index: $n_{\text{substance}} = \frac{c_{\text{vacuum}}}{c_{\text{substance}}}$ / refractive index = $\frac{\text{speed of light in sound}}{\text{speed of light in substance}}$

Snell's law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

To faster medium: $\frac{\sin i}{\sin r} = \frac{1}{n}$

To slower medium: $\frac{\sin i}{\sin r} = n$

Critical angle: $\sin c = \frac{1}{n}$

Speed of light: 3×10^8 m/s

8 Electricity

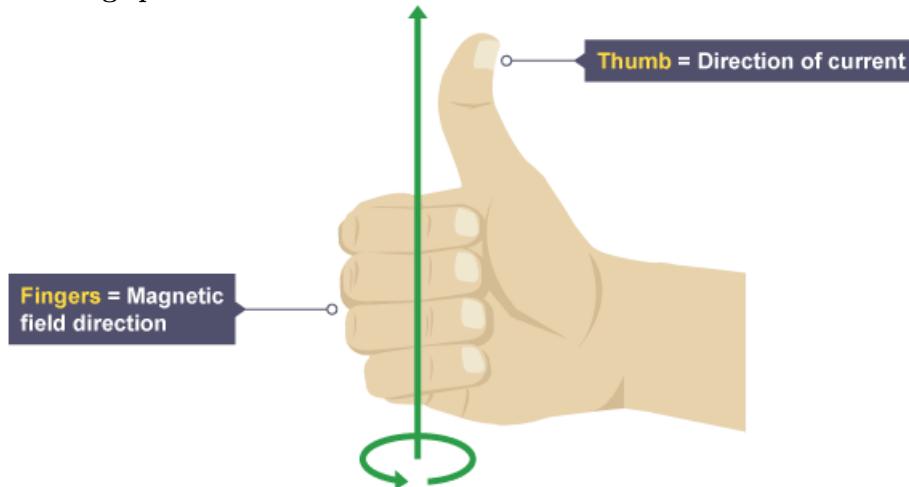
Charge of 1 electron: 1.6×10^{-19} C (one Coulomb is about the charge of 6×10^{18} electrons)

Current: $I = \frac{Q}{t}$ / current = $\frac{\text{charge}}{\text{time}}$

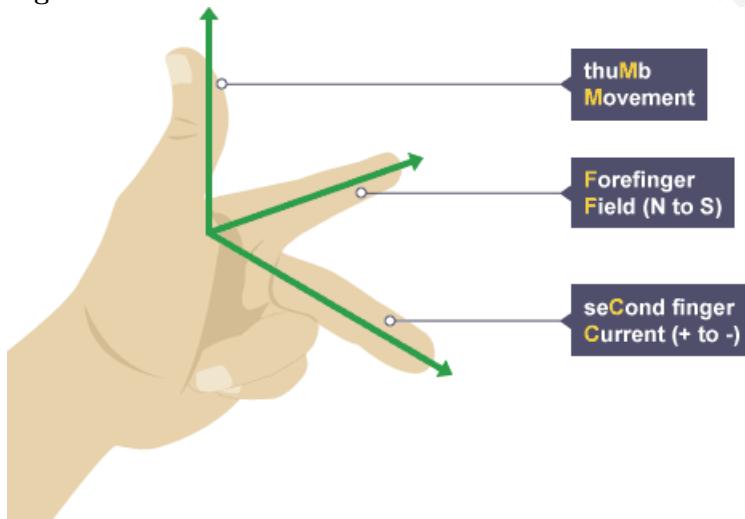
Voltage: $V = \frac{W}{Q}$ / voltage = $\frac{\text{energy transferred}}{\text{charge}}$

Ohm's law: $V = IR$ / voltage = current \times resistance

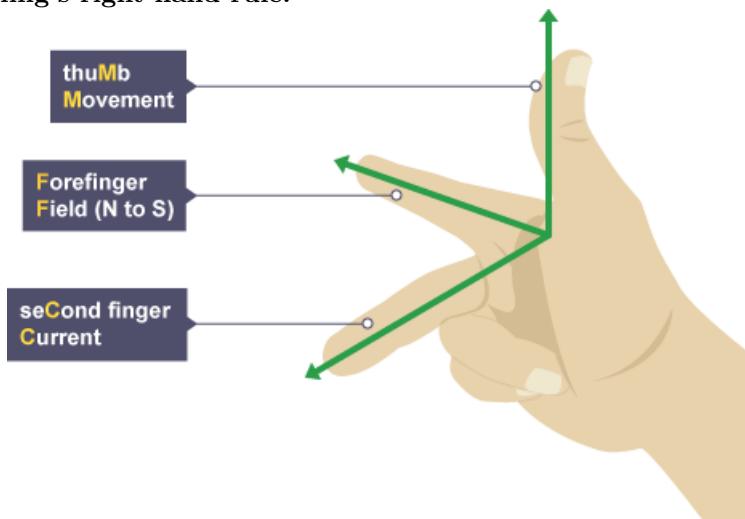
Resistance of a wire: $R = \frac{\rho L}{A}$ / resistance = $\frac{\text{resistivity} \times \text{length}}{\text{cross sectional area}}$


Combined resistances of resistors in series: $R = R_1 + R_2$ / $R = R_1 + R_2 + R_3$

Combined resistances of resistors in parallel: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ / $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$


Power: $P = VI = I^2R = \frac{V^2}{R}$

9 Magnets and currents


Right hand grip rule:

Fleming's left hand rule:

Fleming's right hand rule:

Transformer voltage: $\frac{V_p}{V_s} = \frac{N_p}{N_s} / \frac{\text{input voltage}}{\text{output voltage}} = \frac{\text{number of turns on primary coil}}{\text{number of turns on secondary coil}}$

Transformer current: $V_p \times I_p = V_s \times I_s$

Power lost in cable: $P = I^2 R$

10 Atoms and radioactivity

Alpha decay: ${}_Z^A X \rightarrow {}_{Z-4}^{A-2} Y + {}_2^4 \alpha$

Beta decay: ${}_Z^A Y \rightarrow {}_{Z+1}^A Y + {}_{-1}^0 \beta$

Gamma decay: ${}_Z^A X \rightarrow {}_Z^A Y + {}_0^0 \gamma$

11 The Earth in space

Gravitational force from sun: $F \propto \frac{1}{r^2}$

Distance of 1 light year: $9.5 \times 10^{15} \text{ m} / 9.5 \times 10^{12} \text{ km}$

Hubble constant: $H_0 = \frac{v}{d} \approx 2.2 \times 10^{-18} \text{ s}^{-1}$

Age of universe: $t = \frac{d}{v} = \frac{1}{H_0} \approx 4.55 \times 10^{17} \text{ s} \approx 14.4 \text{ billion years}$