

Hydrological characteristics + processes

2023年1月30日

17:03

Keywords

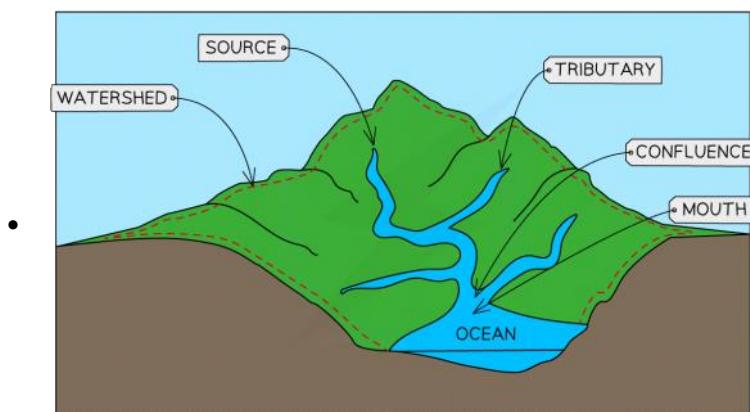
- Hydrology: <https://quizlet.com/cn/769956187/flash-cards/>
- Water cycle / hydrological cycle: <https://quizlet.com/cn/769960409/flash-cards/>
- River: <https://quizlet.com/cn/769960839/flash-cards/>

Three states of water in the cycle

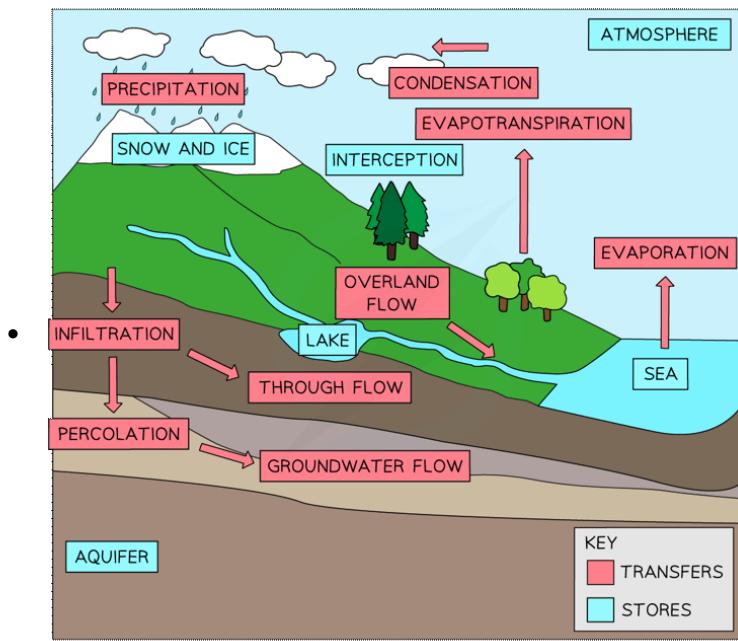
- Ice
- Liquid water
- Water vapour

Types of precipitation

- Rain
- Snow
- Sleet
- Hail


Fog and mist

- Fog
 - Denser, less visibility
- Mist
 - See through, quite thin
- Formed when water vapour is condensed at ground level


Clouds

- 3 types of clouds
 - Cirrus clouds
 - High altitude, thin clouds
 - Like horsetail
 - Cumulus
 - White, fluffy clouds
 - Look like cauliflower
 - Stratus
 - Form in layers
 - Cause rain when they are grey
- Alto: high up
- Nimbo / nimbus: grey and black, causes rain

Drainage basin

Hydrological cycle flows

Upper course

- Characteristics
 - Valley
 - Steep sided
 - Narrow
 - V shaped
 - Vegetation
 - Grassland
 - River channel
 - Steep gradient
 - Narrow and shallow
 - Flowing straight and down the slope
 - Low flow
 - Few tributaries have added water to the main river
 - Large and angular bedload
 - Low velocity
 - High friction
 - Low flow
 - Low discharge
 - Small cross section (low flow)
 - Low velocity
- Processes
 - Vertical erosion is the dominant process
 - Traction and saltation is the main transportation type

Middle course

- Characteristics
 - Valley
 - Gentle slope on sides
 - Wide
 - Vegetation
 - Farmland
 - River channel
 - Gentle gradient
 - Wide and deep

- Meandering and downslope flow
- Smaller and rounder load due to attrition
- Processes
 - Vertical erosion decreasing in importance
 - More lateral erosion and deposition
 - Suspension is the main transportation type

Lower course

- Characteristics
 - Valley
 - Very gentle slopes on sides
 - Very wide
 - Vegetation
 - Farmland
 - River channel
 - Almost flat
 - Widest and deepest
 - Meandering and downslope flow
 - High flow
 - Many tributaries have added water to the main river
 - Bedload is small and rounded due to attrition
 - Fastest velocity
 - Less friction with the smooth and deep river channel
 - High flow
- Processes
 - Deposition is more important than erosion
 - Fine material deposited
 - Lateral erosion because the river is cutting sideways

River processes

2023年1月30日

17:03

Keywords

- <https://quizlet.com/cn/769205279/flash-cards/>

Erosion processes

- Hydraulic action
 - Power of fast flowing water breaks up the rock and removes pieces
 - Water flows into cracks in the rock and compresses the air
 - When water flows out the air expands rapidly, it implodes and over time breaks up the rock
- Abrasion
 - Sand and stones carried by the river water are thrown at the river bank or bed
 - They weaken the rock, causing pieces to be removed
- Solution
 - Some rock types dissolves in water e.g. limestone and chalk
 - Some rock types does not dissolve e.g. granite and basalt
- Attrition
 - The load carried by the river smashed together and become smaller and rounder
 - (Not eroding the river bank and bed)

Factors affecting rate of erosion

- High velocity
 - More load carried in the water
 - More abrasion
 - Faster flow
 - More hydraulic action and solution
- Resistant rock
 - e.g. granite / basalt
 - Formed by solidified lava
 - No pores - no hydraulic action
 - Not dissolving in the water - no solution
 - Harder
- Less resistant rock
 - e.g. limestone / chalk
 - Have pores
 - Dissolves in the water
 - Softer

Transportation process

- Traction
 - Larger and heavier particles are rolled along the river bed
 - Boulders and cobbles
- Saltation
 - Lighter particles are bounced along the river bed
 - Pebbles and gravel
- Suspension
 - The smallest and lightest particles are carried by the water
 - Make the water muddy or cloudy
 - Sand and silt
- Solution
 - Particles which have been dissolved are carried as a solution in the water
 - Cannot see the particles
 - Mostly happens in areas of limestone or chalk

- Clay
- There is more load carried downstream
 - More velocity = more energy = more load

Load particle sizes

- Heavy
 - Boulders > cobbles
 - Hard to pick up
- Medium sized
 - Pebbles > gravel > sand
 - Sand is the easiest to pick up because it has light individual pieces
- Smallest / finest size
 - Silt > clay
 - Clay is the easiest to transport
 - Stick together so heavier than sand, harder to pick up

Reasons for deposition

- Losing energy because the river slows down
 - Gradient decreases
 - Meets a large body of water
 - River floods covers the flood plain during a flood so the water is shallower
 - More friction
 - River is returning to normal flow after a heavy storm

Sequential deposition

- The load is deposited in order of its size with the largest particles first
- Clay is not deposited
 - It is too light

Deposition at mouth

- Most deposition is done at the mouth
 - Carries most load at the mouth
 - Loses energy when meeting the sea
- Flocculation
 - The salt causes the clay particles to stick together when the river meets the sea and is in contact with salt water
 - Clay particles become heavier so they are then deposited

Discharge

- Discharge = width × depth × speed (m^3/s)
- Higher downstream
 - Greater depth
 - Greater width
 - Highest speed

River landforms

2023年1月31日

20:02

Keywords

- <https://quizlet.com/cn/769952217/flash-cards/>

Positions

- Upper course
 - Interlocking spurs
 - Potholes
 - Rapids
 - Waterfalls
 - Gorges
 - V-shaped valley
- Middle or lower course
 - Meanders
 - Oxbow lakes
 - Braided channels
 - Levees and floodplains
- Mouth of the river
 - Deltas
 - Estuaries

Interlocking spurs formation

- Caused by the river winding round pieces of harder rock
- The low discharge and slow velocity of the water does not have enough energy to erode through them

V shaped valley formation

- The river bed is more prone to erosion
- The river eroded downwards
- Sides of the river channel are weakened and become prone to collapse
- The sides collapse and create the V shape

Rapids formation

- Slightly steeper gradient in the river
- The river bed is rocky and uneven so it causes rough white water (turbulent water)

Waterfall formation

- Horizontal layer of more resistant rock above a layer of less resistant rock
- Soft rock is eroded faster by hydraulic action, creating an undercutting beneath the hard rock
- Overhanging rock layer collapses because there is no support underneath and becomes fallen rock
- Abrasion from the fallen rocks and hydraulic action erode vertically to create a plunge pool
- Waterfall retreats upstream, leaving a steep-sided gorge

Potholes formation

- Smooth, rounded holes in the bedrock of the river bed
- About 30cm across
- Stones are trapped in currents in the water
- Erode small holes in the river bed by abrasion
- The stones get trapped in the holes
- Turbulent flow of water swirl them around in the hole
- They continue eroding the hole, making them deeper and larger

Meanders formation

- Water in a river flows in a corkscrew pattern called helical flow
- Faster flow in the outside of the flow
 - Thalweg is found close to the outside bank
 - Outside bank being undercut by lateral erosion such as abrasion and hydraulic action
 - Forms a steep river cliff and deepens the channel on the outside of the bend
- Slower flow in the inner bank due to the friction when moving inside
 - Deposits sediment such as sand and shingle on the slip off slope
 - Form point bar
- The cross section of the channel is asymmetrical
 - Shallower on the inside and deeper on the outside

Oxbow lakes formation

- Meanders migrate towards each other due to erosion on outside of bends
- Neck between the meanders is eroded and become very narrow
- New straighter and more efficient channel formed during a flood
- Deposition of sediment due to lack of energy
 - Water now takes the quickest route
 - In slow flowing old channel and where it attempts to re-join straighter channel
 - Blocks the end of the meander and separates it from the river
- Leaves an oxbow lake with stagnant water
 - Eventually dry up and leave an meander scar

Floodplain and levees formation

- Erosion
 - The fastest flow erodes the outer bank and slightly downstream bank
 - Meanders migrate downstream creating flat valley
 - Floodplain is created
- Deposition
 - When the river floods and covers the floodplain, the water loses speed because of the increased friction with the ground and shallow water
 - The river loses energy and deposits the load it is transporting
 - The largest, heaviest material like pebbles and gravels are deposited first
 - They build up the river banks forming levees
 - The smaller lighter material like silt is deposited further away from the river to form the floodplain
 - The deposited material is called alluvium and forms fertile soil

Deltas formation

- The river carries a lot of load because it had been flowing over a long distance
 - Lots of load from erosion upstream
 - High discharge in lower course so lots of load can be carried
- It slows down when it hits the sea and loses energy so lots of load is deposited
- The sediment is not removed by the sea because it has a coastline with low energy waves
- The river channel divides into many distributaries
 - The river deposit its load in the centre of the channel
 - Water are forced to flow sideways
- The river deposits its load sequentially with the largest particles first (gravel → sand → silt)
- Flocculation
 - The salt causes particles of clay to clump together so they become heavier and deposit
- Shapes
 - Arcuate: triangular e.g. Nile Delta
 - Bird's foot: look like fingers of deposition growing out into the sea e.g. Mississippi delta

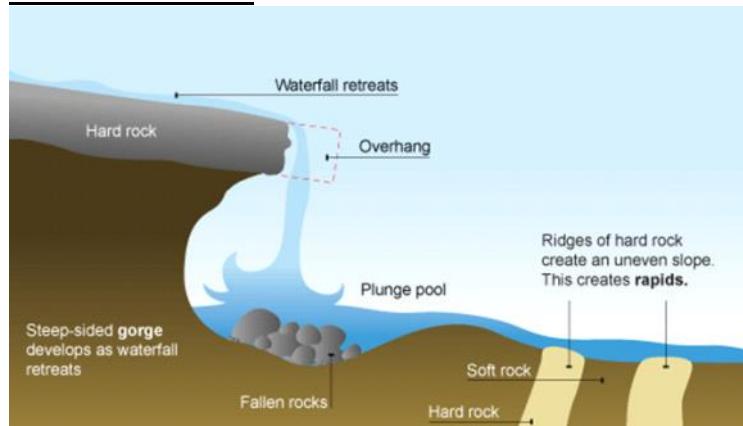
Estuaries

- Occurs when the mouth of the river is tidal
 - The water changes height from low tide to high tide every 12 hours

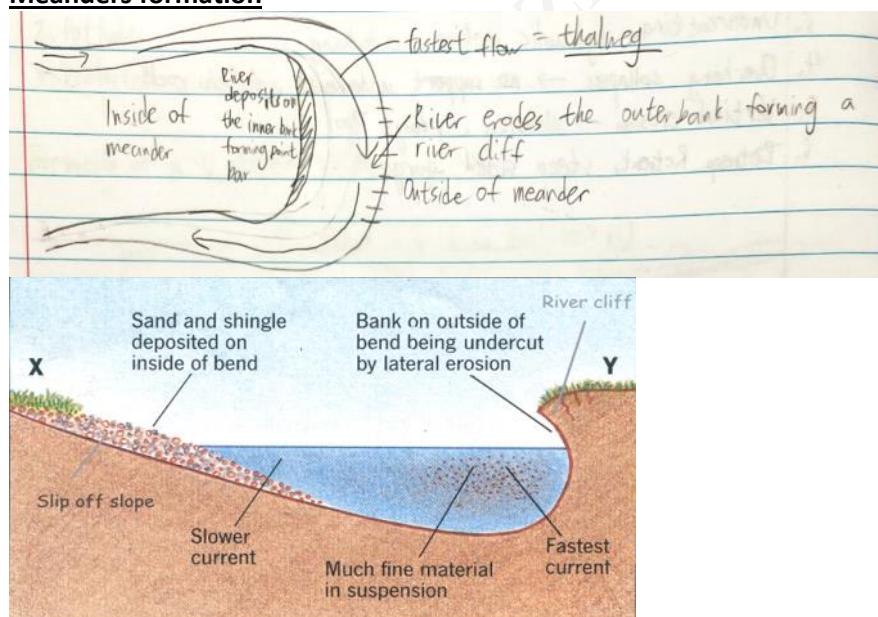
- The water in the river mouth is salty because it is a mixture of river and sea water
- The river loses energy when it flows into the sea and deposits sediments to form mudflats
- Sometimes the mud is colonised by vegetation which can survive in the salty environment and forms salt marshes
 - These plant can survive even when the water covers them at high tide

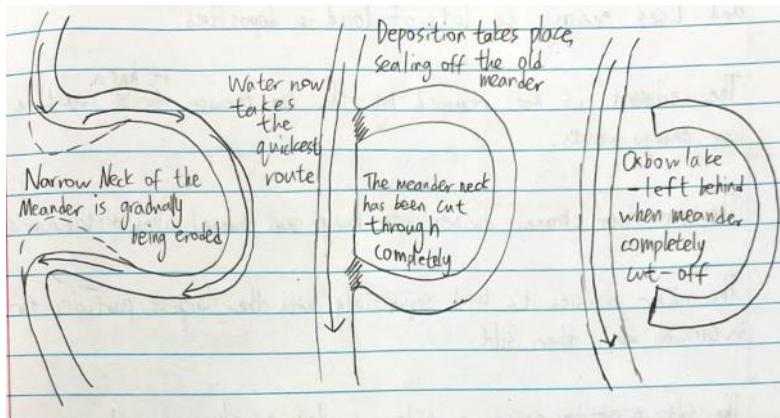
©Xingzhi Lu 2024

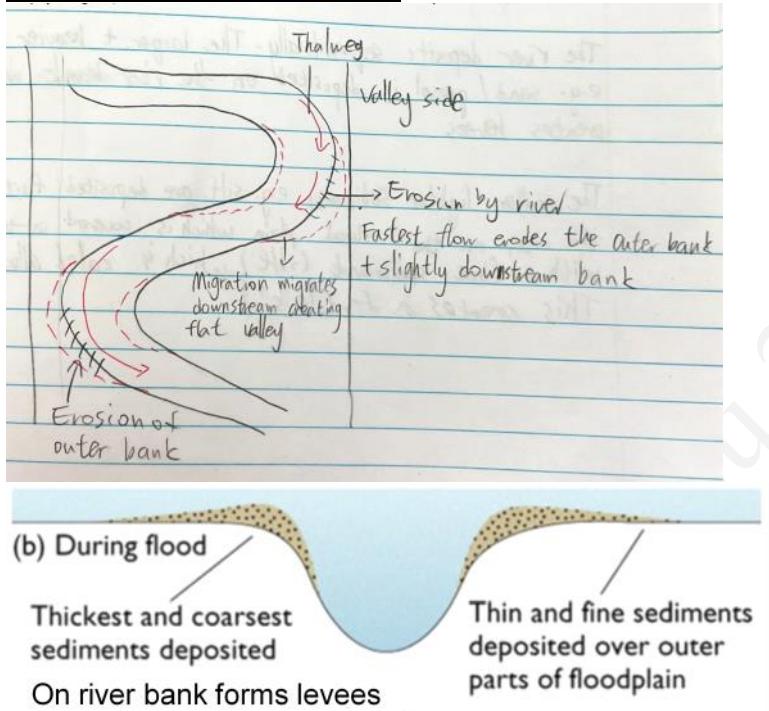
River landforms diagrams


2023年3月20日

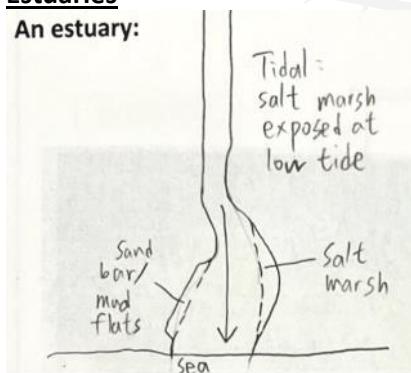
19:09


V-shaped valley formation

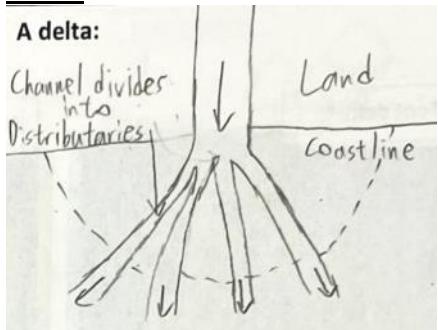

Waterfall formation


Meanders formation

Oxbow lakes



Floodplain and levees formation


Estuaries

An estuary:

Deltas

A delta:

Opportunities and hazards of rivers

2023年1月30日 17:03

Keywords

- <https://quizlet.com/cn/782365379/flash-cards/?new>

Opportunities

- Flat land
 - The floodplain is a large area of flat land
 - Easier to build houses and factories
- Fertile soils
 - When rivers flood the sediment they deposit is called alluvium
 - Creates fertile soils so there is high crop yield
- Water supply
 - River water is fresh and can be used for irrigating crops
 - More food can be grown even in areas where there is low rainfall
 - The water can also be used for domestic use and in factories for cooling or cleaning machines
- Transport
 - Large rivers can be used as transport routes for shipping goods from inland areas to the sea port
- Fishing
 - Fish are an important source of protein
- Hydroelectric power
 - Rivers can be dammed and the power of the river used to turn turbines
 - Create a cheap, clean source of electricity

River flooding

- When the water in their channel reaches the top of the banks which is called bankfull discharge
- Then the river water overflows the banks and covers the floodplain

Causes of river flooding

- Physical causes
 - (short lag time)
 - Short period of heavy rainfall
 - The water cannot infiltrate fast enough into the ground because the ground is saturated
 - The water quickly reaches the river as surface runoff so there is a short lag time
 - The river cannot transport it away quickly enough
 - Long period of rainfall
 - The soil and rock are saturated
 - Any further rainfall cannot infiltrate into the soil and so runs off quickly to the river so short lag time
 - River cannot transport water away fast enough
 - Snowmelt in spring
 - Snow melts quickly and lots of water reach the channel quickly
 - Impermeable rock (geology)
 - Rainwater will not percolate into the ground but will reach the river quickly by surface runoff
 - Steep relief
 - Gravity will cause rainwater to run off quickly to the river because water does not have time to infiltrate
 - Small drainage basin
 - Water will enter the river quickly
 - Short lag time
- Human activity

- Agriculture
 - Soil is left unused and exposed to the elements
 - Water takes less time to reach the river by surface runoff because exposed land discourages infiltration
- Deforestation
 - Less vegetation so less interception
 - Ground become saturated faster
 - More surface runoff, water reach river quickly
- Urbanisation
 - Lots of impermeable soil
 - Water reach river quickly by surface runoff
- Climate change
 - Global warming is increasing the number of extreme storms and heavy rainfall events
 - The glaciers which are the source of many rivers are melting faster so increasing the amount of water in rivers

Cause of flashy hydrographs

- = Short lag time
- Heavy, intense rainfall
- Steep relief (steep slopes)
- Ground is already saturated so rainwater cannot infiltrate
- Impermeable rock so the water cannot percolate
- Lack of vegetation so less water is intercepted
- Urbanisation so ground surface is impermeable concrete

Impacts of flooding

- Social
 - Deaths and injuries
 - Homes destroyed so people displaced
 - Schools destroyed so loss of education
 - Water contaminated causing water borne diseases e.g. cholera
 - Power lines destroyed so electricity is cut
- Economic
 - Roads flooded so limited access to businesses
 - Factories / shops flooded so loss of days working
 - High cost to rebuild them
- Environmental
 - Destruction of natural habitats
 - Animals (wild) killed or injured
- Benefits (all 3 categories)
 - Fertile soil from alluvium deposition
 - High crop yield
 - Ground water supplier refilled
 - More water for plant / animal / factories / drinking / domestic use

Management of river flooding

2023年1月30日 17:03

Method to control the flood

- Artificial levees
 - Builds up the banks of the river to increase the size of the river channel cross section
 - More water can be stored in the channel and stops flooding happening as quickly
 - Usually made of concrete so they are strong, but in LEDC often made of earth or mud
- Land use planning
 - Important buildings such as hospitals and schools are built far from the river
 - Floodplains are used for recreational use e.g. parks and golf courses
- Afforestation
 - Increase interception
 - Some of the water returns to the atmosphere through evapotranspiration
 - More unlikely and slower to become saturated
 - Less water reaches the river and reaches more slowly
- Dredging the channel
 - Remove sediments from the river bed
 - Makes the river deeper so its channel can hold more water
- Straightening the channel
 - Remove meanders and make the river run straighter
 - Shortens the river so that the river flows faster and water is removed from the area faster
 - May cause more flooding downstream
- Bridge design
 - Build bridges that are slim and streamlined
 - Allowing water to pass through the area of river more quickly
- Dams and reservoirs
 - Build a dam to store water in a reservoir
 - Water is released steadily
- Creating natural areas
 - e.g. wetlands
 - Soak up some of the flood water
- Overflow channels or spillways
 - Extra river channels or spare land near the river
 - Extra water can be diverted and stored there during a flood

Preparing the population

- Flood warning systems
 - Gives people time to prepare and evacuate
- Education & awareness
 - People know what to do during a flood
- Train emergency services
 - To respond effectively to rescue people
- Flood shelters
 - Safe, dry place for people to stay
- Emergency aid
 - Help in the form of food, water, shelter

Bangladesh flooding

2023年3月10日 0:54

Basic info

- LEDC
- One of the poorest countries in Asia
- Having a drainage basin that covers over 1 million km²
- Most of the land is a delta from two main rivers: Ganges and Brahmaputra

Causes of flooding in Bangladesh

- Physical
 - Many large rivers including Ganges + Brahmaputra flow through Bangladesh with high discharges
 - Low lying flat land
 - It is formed of large, flat flood plains and delta created by these large rivers
 - 25% of Bangladesh is less than 1 m altitude
 - Snowmelt from the Himalayas takes place in late spring & summer, heavy monsoon rains happen at the same time
 - The rivers have a high peak discharge
 - Tropical storms/ cyclones bring heavy rains and coastal flooding
- Human
 - Deforestation of the Himalaya
 - Reducing interception rates which increases run off to the rivers
 - Short lag time
 - Urbanisation on the flood plain e.g. in Dhaka
 - Increased amount of run off to the rivers
 - Urbanisation has reduced the lag time and peak flow has greatly increased so flooding is more frequent
 - Climate change / global warming
 - Increased snow melt in the Himalaya, increase peak discharge
 - Increased number of cyclone storms in the region
 - Poorly maintained flood defences
 - e.g. artificial levees collapse in times of high river discharge

Impacts of flooding in Bangladesh

- In 2007 flood
- Over 1,100 people killed
- Many deaths caused by drowning, landslides and snakebites
- 2 million acres of agricultural land was damaged and crops lost
- 10 million people were estimated to have been displaced
- the main highway connecting Dhaka to the rest of the country was flooded isolating the capital
- 2/3 of the land was flooded
- 100,000 people had caught dysentery / diarrhoea
- Rice crops were devastated TWICE that year so farmers did not have time to recover their losses and replant
- Food insecurity caused some people to die from starvation
- \$150 million of aid was sought by Bangladesh
- \$300 million of crops were damaged in the initial floods
- Sundarbans threatened
 - National park with protected species and a natural coastal defence

Methods of managing flooding in Bangladesh

- Artificial levees
 - They built 350km of artificial levees costing \$6 billion

- Some of the levees are built of mud but increasingly they are using concrete to reinforce the natural levees
- These increase the size of the cross section of the river channels so they can hold more water
- Dams and reservoirs
 - They built 7 large dams in Bangladesh to store excess water e.g. Kaptai dam
 - Holds back the monsoon rainfall in a reservoir
 - So they would not flood the surrounding areas
- Flood satellite imaging systems have been developed
 - More accurately predict flooding and allow more warnings to be given to the people
 - They are monitoring hydrographs and rainfall patterns in the major drainage basins
- Building 500 flood shelters
 - Built on pillars so they won't be overflowed when it is flooding
 - People can go there and it prevents injuries and deaths
- Setting up flood early-warning systems
 - People can evacuate the area beforehand
 - People are instructed of what to do in the middle of flooding
- Others
 - Flood action plan set up in 1989, funded by world bank
 - Negotiations to reduce deforestation in Nepal, funding tree planting programmes

Opportunities of living by rivers in Bangladesh

- Trade
 - The rivers are used for transportation of goods
 - Encourage trade between the capital city of Dhaka and the port city of Chittagong
- Industry
 - Factories are built along the riverside
 - River water used in the industrial process for cleaning and cooling machines.
- Agriculture
 - Water from the rivers is used for irrigating crops
 - The flat floodplains of the delta are very fertile because of the alluvium deposited during the flood
 - This causes high crop yields provide a source of food and cash crops for export e.g. rice and jute
 - Bangladesh can grow 3 crops a year
- Fish / shrimp
 - From the river and shrimps farmed in flooded fields provide an excellent source of protein
 - Sold for export