
©Xing
zh

i L
u 2

02
4

Stages of the development cycle
Analysis•
Design•
Coding•
Testing•

7.1.1 Analysis
The requirement is identified using abstraction and decomposition tool•
Requirements

A problem is clearly defined and set out so anyone working on the solution understands what 
is needed

•

Think in input and output•

•

Abstraction
The removal of unnecessary detail•

•

Decomposition
The breaking down of a complex problem into smaller parts and then subdivided into even 
smaller parts

•

Decomposed into: input, processes, output, storage•

•

7.1.2 Design
Show the programmer what is to be done

All the task needed, how tasks perform and how they work together•
•

Three ways to document the design
Structure charts•
Flowchart•
Pseudocode•

•

7.1.3 Coding and iterative testing
The programmers write the program•
The program is split into modules, which can then be developed by different programmers at the 
same time before being put together as a final program

•

Iterative testing
The testing of each individual module over and over again and fixing the problems until it 
works correctly

•
•

7.1.4 Testing
Test data: Each of the modules are put together to create a final program•
The program is run many times with different sets of test data to see if it produces the correct 
outcomes and meets the program requirements

•

This ensures that all the tasks completed work together as specified in the program design•

7.1 Notes
2023年1月12日 22:56

   Page 1    



©Xing
zh

i L
u 2

02
4

7.2.1 Sub-systems
Top-down design

The decomposition of a computer system into a set of sub-systems•
Then breaking each sub-system down into a set of smaller sub-systems•
Keeps breaking down until each sub-system just performs a single action•

•

Stepwise refinement
The process of breaking down into smaller sub-systems•

•

Benefits
Several programmers can work independently to develop and test different sub-systems for 
the same system at the same time

•

Reduces the development and testing time•

•

Sub-systems can be shown as a structure diagram

•

•

Sub-routines can be shown in flow chart or pseudocode•

7.2.2 Decomposing a problem
Problems need to be decomposed into component parts•
Inputs

The data used by the system that needs to be entered while the system is active•
•

Processes
The tasks that need to be performed using the input data and any other previously stored data•

•

Outputs
Information that needs to be displayed or printed for the users of the system•

•

Storage
Data that needs to be stored in files on an appropriate medium for use in the future•

•

7.2.3a Structure diagrams
Used to show top-down design in a diagrammatic form•
Hierarchical

Showing how a solution can be divided•
Each level gives a more detailed breakdown•

•

7.2.3b Flowchart
Shows diagrammatically the steps required to complete a task and the order that they are to be 
performed

•

These steps and order together are called an algorithm•
Effective way to communicate how an algorithm in a system or sub-system works•

Flow line

Process

7.2 Notes
2023年1月30日 19:11

   Page 2    



©Xing
zh

i L
u 2

02
4

Process

Subroutine

Input / Output

Decision

Terminator

•

7.2.3c Pseudocode
Rules

Use a non-proportional font - Consolas is suggested•
All keywords are written in capital letters (e.g. OUTPUT)•
All names given to data items and subroutines start with a capital letter (e.g. AdultPrice)•
Where conditional and loop statements are used, repeated or selected statements are 
indented by two spaces.

•

•

Code•

If … then … else IF ?
  THEN
    …
  ELSE
    …
ENDIF

Case CASE OF ?
  ? : …
  ? : …
  OTHERWISE …
ENDCASE

For … next FOR ? ← ? TO ?
  …  
NEXT

Repeat … until REPEAT
  …
UNTIL ?

While … do … endwhile WHILE ? DO
  …
ENDWHILE

   Page 3    



©Xing
zh

i L
u 2

02
4

7.4.1 Totalling
Total ← 0
OUTPUT "Enter Class Size"
INPUT ClassSize
FOR Counter ← 0 TO ClassSize
    Total ← Total + StudentMark[Counter]
NEXT Counter
OUTPUT Total

7.4.2 Counting
PassCount ← 0
OUTPUT "Enter Class Size"
INPUT ClassSize
FOR Counter ← 0 TO ClassSize
    INPUT StudentMark
    IF StudentMark > 50
        THEN
            PassCount ← PassCount + 1
NEXT Counter
OUTPUT PassCount

7.4.3 Maximum, minimum and average
MaximumMark ← StudentMark[0]
MinimumMark ← StudentMark[0]
OUTPUT "Enter Class Size"
INPUT ClassSize
FOR Counter 1 ← TO ClassSize
    IF StudentMark[Counter] > MaximumMark
        THEN   
            MaximumMark ← StudentMark[Counter]
    ENDIF
    IF StudentMark[Counter] > MinimumMark
        THEN   
            MinimumMark ← StudentMark[Counter]
    ENDIF
    
NEXT Counter
OUTPUT MaximumMark
OUTPUT MinimumMark

7.4.4 Linear search
OUTPUT "Please enter the name to find"
INPUT Name
OUTPUT "Enter ClassSize"
INPUT ClassSize
Found ← FALSE
Counter ← 1
REPEAT
    IF Name = StudentName[Counter]
      THEN
        Found ← TRUE
      ELSE
        Counter ← Counter + 1
    ENDIF

7.4 Standards methods of solution
2024年1月18日 17:40

   Page 4    



©Xing
zh

i L
u 2

02
4

    ENDIF
UNTIL Found OR Counter > ClassSize
IF Found
    THEN
        OUTPUT Name, "found at position", Counter, "in the list"
    ELSE    
        OUTPUT Name, "not found"
ENDIF

7.4.5 Bubble sort
swapped ← "yes"
WHILE swapped = "yes" DO
    swapped ← "no"
    FOR index ← 0 TO 4
        IF numbers[index] > numbers[index +1]
            THEN
                temp ← numbers[index]
                numbers[index] ← numbers[index +1]
                numbers[index +1] ← temp
                swapped ← "yes"
        ENDIF
    NEXT index
ENDWHILE
OUTPUT "The list is now in ascending order"
OUTPUT numbers

   Page 5    



©Xing
zh

i L
u 2

02
4

7.5.1 Validation
Validation

The automated checking by a program that data is reasonable before it is accepted into a 
computer system

•

Do not check if data is correct•
If data is rejected then a message should be output explaining why the data was rejected 
along with another opportunity to enter the data

•

•

Types of validations
Range check•
Length check•
Type check•
Presence check•
Format check•
Check digit•

•

Range check
Checks that the value of a number is between an upper value and a lower value•
e.g. check if percentage marks are all between 0 and 100 inclusive•

•

Length check
Checks either if the data contains an exact number of characters or if the data entered has a 
reasonable number of characters

•

e.g. a password should have exactly 8 characters, family name entered should be 2-30 
characters long

•

•

Type check
Check that the data entered is of a given data type•
e.g. the number of siblings should be an integer, not a real•

•

Presence check
Checks to ensure that some data have been entered and the value have not been left blank•
e.g. the name of the person must be entered•

•

Format check
Checks that characters entered conform to a pre-defined pattern•
e.g. date must be in the form dd/mm/yyyy•

•

Check digit
The final digit included in a code that is calculated from all the other digits in the code to check 
if the code entered is correct

•

It is used for codes such as ISBN or VIN•
Used to identify errors caused by mis-typing or mis-scanning a barcode•
Errors that can be identified

An incorrect digit entered○
Transposition errors where two numbers have changed order○
Omitted or extra digits○
Phonetic errors○

•

•

7.5.2 Verification
Verification

Checking data has been accurately copied from one source to another e.g. input into a 
computer or transferred from one part of a computer system to another

•
•

Verification methods
Double entry

The data is entered twice, sometimes by different operators○
The computer compares both entries and if they are different then it outputs an error 
message requiring the data is entered again.

○

•

Screen / visual check•

•

7.5 Validation and verification
2024年1月18日 9:54

   Page 6    



©Xing
zh

i L
u 2

02
4

Screen / visual check
A manual check completed by the user who is entering the data○
When the data entry is complete the data is displayed on the screen and the user is 
asked to confirm that it is correct before continuing

○

The user either checks the data on the screen against a paper document that is being 
used as an input form or check from their own knowledge

○

•

   Page 7    



©Xing
zh

i L
u 2

02
4

7.6.1 How to suggest and apply suitable test data
Purpose of using test data

Check that the program works as expected •
Check for logic/runtime errors •
Check that the program rejects any invalid data that is input •
Check that the program only accepts reasonable data •

•

Types of test data
Normal data

Data that the algorithm would normally use○
•

Abnormal data (or erroneous data)
Data that should be rejected○

•

Extreme data
Data at the outer extremes of the range○

•

Boundary data
Normal data on the valid boundary and abnormal data on the valid boundary○
Boundary data is in a pair e.g. 0 and -1, 100 and 101○

•

•

7.6 Test data
2024年4月3日 23:27

   Page 8    



©Xing
zh

i L
u 2

02
4

8.1.6 Procedures and functions

Procedure 
pseudocode

PROCEDURE ProcedureName (Parameter : TYPE)
//Code

ENDPROCEDURE

CALL ProcedureName

Function 
pseudocode

FUNCTION FunctionName (Parameter : TYPE) RETURNS TYPE
//Code
RETURN ...

ENDFUNCTION

•

Procedure
A set of programming statements grouped together under a single name that can be called to 
perform a task at any point in a program

•

A procedure needs to be called (CALL in Pseudocode)•
Parameters may be passed to the procedure to be used•

•

Function
A set of programming statements grouped together under a single name that can be called to 
perform a task at any point in a program

•

In contrast to a procedure, a function will return a value back to the main program•
A function is used as part of an expression and is called by its identifier•
Parameters may be passed to the function to be used•

•

Parameters
Are the variables that store the values of the arguments passed to a procedure or function•
Some but not all procedures and functions will have parameters.•

•

Why procedures / functions
It enables many programming statements to be grouped together using a single identifier•
Procedures / functions can be reused in the same program or other programs / create 
modular programs

•

Less duplicated code is required - shorter program•
Different programmers can work on different procedures / functions in the same project at 
the same time which speeds up development

•

•

Why parameters
To pass values from the main program to a procedure / function•
So that they can be used in the procedure / function•
Parameters mean that the same procedure can be used with different data•

•

8.1.7 Library routines
Definition

A standard subroutine that is available for immediate use.•
•

•

8.1 Programming concepts
2024年4月3日 23:28

   Page 9    



©Xing
zh

i L
u 2

02
4

•

8.1.8 Creating a maintainable program
Why does a program need to be maintainable

People need to be able to know what the program does when it is altered by someone else / 
altered after a long period of time

•

A program might not have any documentation attached to it and therefore it is only the actual 
code that can be used to work out what the program does.

•

Using meaningful identifiers, including comments and splitting up the program using 
procedures and functions can make a program easier to understand, follow and maintain

•

•

Methods to do so
Meaningful identifiers

Identifiers for variables, constants, arrays and procedures and functions should all be 
clear and meaningful

○

They will help the programmer / future programmers to recognise the purpose of a 
variable as well as tracking it through a program

○

•

Comments
Ensures that a programmer can easily find specific sections as well as knowing the 
purpose of that section of the code.

○
•

Procedures and functions
Code can be split into smaller sections using procedures and functions (subroutines or 
modules)

○

Modular programs are easier to update, understand, debug and maintain compared to 
one large program

○

•

White space•

•

   Page 10    



©Xing
zh

i L
u 2

02
4

String handling
2024年4月3日 23:14

   Page 11    



©Xing
zh

i L
u 2

02
4

8.3.1 Purpose of storing data in a file
When running a program, any data that is entered into the program will be lost when the program is 
completed

•

Therefore, if data is required again by a computer program it can be stored in a file.•
Benefits

Data can be stored permanently•
Data can be accessed by the same program at a later date•
Data can be accessed by another program•
Data can be sent to another computer•
Data can be used as a back up of the data•

•

8.3.2 Using files

DECLARE ExampleString : STRING 
//Declares the ExampleString variable

OPENFILE "FileA.txt" FOR READ
READFILE "FileA.txt", ExampleString 
//Reads the contents of FileA.txt and assigns it to ExampleString
CLOSEFILE "FileA.txt"

OPENFILE "FileB.txt" FOR WRITE
WRITEFILE "FileB.txt", ExampleString 
//writes the value of ExampleString to FileB.txt
CLOSEFILE "FileB.txt"

•

•

8.3 File handling
2024年4月3日 23:15

   Page 12    



©Xing
zh

i L
u 2

02
4

9.1.1 Databases intro
Database

Simply a collection of data that holds details about people, things or events•
The data is structured carefully so that information can be extracted from the database as 
needed.

•

•

Table
A table contains data about one type of person, thing or event•
Given a meaningful name•

•

Record
A record in a table contains data about a single person, thing or event•
Rows•

•

Field
A field contains a specific piece of data about each single item and will have a field name•
Columns•

•

Validation
Type

Data entered is of a given data type○
•

Format
Check that the characters entered confirm to a pre-defined pattern○

•

Range
The value of a number is between an upper value and a lower value○

•

Presence
Ensure that some data has been entered and the value has not been left blank○

•

Length
Either:

The data contains an exact number of characters
Data entered is a reasonable number of characters

○
•

Check digit
The final digit included in a code calculated from all the other digits in the code○
Used to identify errors in data entry caused by mis-typing or mis-scanning a barcode○

•

•

9.1.2 Data types in databases
Data types

Text/alphanumeric•
Character•
Boolean•
Integer•
Real•
Date/time•

•

9.1.3 Primary keys
Primary Key

Contains no repeating values•
A field used to uniquely identify each record in a database table•
An existing field could be used as a primary key or and additional field needs to be added•

•

Using existing field / adding a field
Existing field

Some data will already contain a field that has unique values○
The field can be used for the primary key○
e.g. ISBN for books○

•

Adding a field
Other data has fields which all contain repeating data

•

•

9.1 Databases
2023年6月19日 18:49

   Page 13    



©Xing
zh

i L
u 2

02
4

Other data has fields which all contain repeating data○
Another field has to be added to create a unique identifier○
This could simply be an incrementing number e.g. unique number for each student○

9.1.4 Structured Query Language (SQL)

•

ORDER BY

•

ORDER BY FamilyName DESC; would order the list in descending order (Z-A, 100-1) by 
FamilyName

•

ORDER BY FamilyName, FirstName; would sort the output by FamilyName and then FirstName•

•

SUM
SELECT SUM (BedNumber)•
FROM PATIENT•
WHERE Consultant = "Mr Smith";•
Only integer / real fields•

•

COUNT
SELECT COUNT (FirstName)•
FROM PATIENT•
WHERE WardNumber = 6;•
Can be used on any field•

•

   Page 14    



©Xing
zh

i L
u 2

02
4

Types of logic gates

Name Symbol and Screenshot from the simulator Truth Table Logic Notation

NOT Input Output

A X

0 1

1 0

X = NOT A

AND Input Input Output

A B X

0 0 0

0 1 0

1 0 0

1 1 1

X = A AND B

OR Input Input Output

A B X

0 0 0

0 1 1

1 0 1

1 1 1

X = A OR B

XOR Input Input Output

A B X

0 0 0

0 1 1

1 0 1

1 1 0

X = A XOR B

NAND Input Input Output

A B X

0 0 1

0 1 1

1 0 1

1 1 0

X = A NAND B

NOR Input Input Output

A B X

0 0 1

0 1 0

1 0 0

A = A NOR B

10.1-2 Logic gate symbols and functions
2023年5月15日 18:42

   Page 15    



©Xing
zh

i L
u 2

02
4

1 0 0

1 1 0

   Page 16    




