7.1 Notes

2023F1H12H 22:56

Stages of the development cycle
Analysis

Design

Coding

Testing

7.1.1 Analysis
The requirement is identified using abstraction and decomposition tool

Requirements
¢ A problem is clearly defined and set out so anyone working on the solution understands what
is needed
¢ Think in input and output
Abstraction
¢ The removal of unnecessary detail
Decomposition
¢ The breaking down of a complex problem into smaller parts and then subdivided into even
smaller parts
¢ Decomposed into: input, processes, output, storage

7.1.2 Design
Show the programmer what is to be done

¢ All the task needed, how tasks perform and how they work together
Three ways to document the design

e Structure charts

¢ Flowchart

e Pseudocode

7.1.3 Coding and iterative testing
The programmers write the program
The program is split into modules, which can then be developed by different programmers at the
same time before being put together as a final program
Iterative testing
¢ The testing of each individual module over and over again and fixing the problems until it
works correctly

7.1.4 Testing
Test data: Each of the modules are put together to create a final program

The program is run many times with different sets of test data to see if it produces the correct
outcomes and meets the program requirements
This ensures that all the tasks completed work together as specified in the program design

Page 1

7.2 Notes

2023518308 19:11

7.2.1 Sub-systems
Top-down design
¢ The decomposition of a computer system into a set of sub-systems
¢ Then breaking each sub-system down into a set of smaller sub-systems
¢ Keeps breaking down until each sub-system just performs a single action
Stepwise refinement
¢ The process of breaking down into smaller sub-systems
Benefits
e Several programmers can work independently to develop and test different sub-systems for
the same system at the same time
¢ Reduces the development and testing time
Sub-systems can be shown as a structure diagram

|

° Sub-system 1 Sub-system 2 Sub-systemn 3

[. | :

Sub-system 1.1 Sub-system 1.2

Sub-routines can be shown in flow chart or pseudocode

7.2.2 Decomposing a problem
Problems need to be decomposed into component parts
Inputs
¢ The data used by the system that needs to be entered while the system is active
Processes
¢ The tasks that need to be performed using the input data and any other previously stored data
Outputs
¢ Information that needs to be displayed or printed for the users of the system
Storage
¢ Data that needs to be stored in files on an appropriate medium for use in the future

7.2.3a Structure diagrams
Used to show top-down design in a diagrammatic form
Hierarchical

¢ Showing how a solution can be divided

e Each level gives a more detailed breakdown

7.2.3b Flowchart

Shows diagrammatically the steps required to complete a task and the order that they are to be
performed

These steps and order together are called an algorithm

Effective way to communicate how an algorithm in a system or sub-system works

Flow line >

Page 2

Process

Subroutine

Input / Output

Decision

Terminator

7.2.3c Pseudocode
Rules
¢ Use a non-proportional font - Consolas is suggested
¢ All keywords are written in capital letters (e.g. OUTPUT)
¢ All names given to data items and subroutines start with a capital letter (e.g. AdultPrice)
¢ Where conditional and loop statements are used, repeated or selected statements are
indented by two spaces.
Code

If ... then ... else IF ?
THEN

ELSE

ENDIF

Case CASE OF ?
? .
P
OTHERWISE ..
ENDCASE

For ... next FOR ? « ? TO ?

NEXT

Repeat ... until REPEAT

UNTIL ?

While ... do ... endwhile | WHILE ? DO

ENDWHILE

Page 3

7.4 Standards methods of solution

202418 18H 17:40

7.4.1 Totalling
Total « ©

OUTPUT "Enter Class Size"
INPUT ClassSize
FOR Counter « © TO ClassSize
Total « Total + StudentMark[Counter]
NEXT Counter
OUTPUT Total

7.4.2 Counting
PassCount « ©

OUTPUT "Enter Class Size"
INPUT ClassSize
FOR Counter « © TO ClassSize

INPUT StudentMark

IF StudentMark > 50

THEN
PassCount <« PassCount + 1

NEXT Counter
OUTPUT PassCount

7.4.3 Maximum, minimum and average
MaximumMark < StudentMark[9]
MinimumMark < StudentMark[9]
OUTPUT "Enter Class Size"
INPUT ClassSize
FOR Counter 1 « TO ClassSize
IF StudentMark[Counter] > MaximumMark
THEN
MaximumMark < StudentMark[Counter]

ENDIF
IF StudentMark[Counter] > MinimumMark
THEN
MinimumMark < StudentMark[Counter]
ENDIF

NEXT Counter
OUTPUT MaximumMark
OUTPUT MinimumMark

7.4.4 Linear search

OUTPUT "Please enter the name to find"
INPUT Name

OUTPUT "Enter ClassSize"

INPUT ClassSize

Found <« FALSE

Counter « 1

REPEAT
IF Name = StudentName[Counter]
THEN
Found « TRUE
ELSE

Counter « Counter + 1

Page 4

ENDIF
UNTIL Found OR Counter > ClassSize
IF Found
THEN
OUTPUT Name, "found at position", Counter, "in the list"
ELSE
OUTPUT Name, "not found"
ENDIF

7.4.5 Bubble sort
swapped « "yes"
WHILE swapped = "yes" DO
swapped <« "no"
FOR index « © TO 4
IF numbers[index] > numbers[index +1]
THEN
temp « numbers[index]
numbers[index] « numbers[index +1]
numbers[index +1] « temp
swapped « "yes"

ENDIF
NEXT index
ENDWHILE
OUTPUT "The list is now in ascending order"
OUTPUT numbers

Page 5

7.5 Validation and verification

202418 18H 9:54

7.5.1 Validation
¢ Validation
¢ The automated checking by a program that data is reasonable before it is accepted into a
computer system
¢ Do not check if data is correct
¢ [f data is rejected then a message should be output explaining why the data was rejected
along with another opportunity to enter the data
¢ Types of validations
¢ Range check
¢ Length check
¢ Type check
e Presence check
e Format check
e Check digit
¢ Range check
¢ Checks that the value of a number is between an upper value and a lower value
e e.g. check if percentage marks are all between 0 and 100 inclusive
Length check
¢ Checks either if the data contains an exact number of characters or if the data entered has a
reasonable number of characters
e e.g. a password should have exactly 8 characters, family name entered should be 2-30
characters long
e Type check
¢ Check that the data entered is of a given data type
¢ e.g. the number of siblings should be an integer, not a real
* Presence check
¢ Checks to ensure that some data have been entered and the value have not been left blank
¢ e.g. the name of the person must be entered
e Format check
e Checks that characters entered conform to a pre-defined pattern
e e.g. date must be in the form dd/mm/yyyy
Check digit
¢ The final digit included in a code that is calculated from all the other digits in the code to check
if the code entered is correct
e |tis used for codes such as ISBN or VIN
¢ Used to identify errors caused by mis-typing or mis-scanning a barcode
e Errors that can be identified
An incorrect digit entered
o Transposition errors where two numbers have changed order
o Omitted or extra digits
o Phonetic errors

O

7.5.2 Verification
e Verification
¢ Checking data has been accurately copied from one source to another e.g. input into a
computer or transferred from one part of a computer system to another
¢ Verification methods
¢ Double entry
o The data is entered twice, sometimes by different operators
o The computer compares both entries and if they are different then it outputs an error
message requiring the data is entered again.

Page 6

e Screen / visual check
o A manual check completed by the user who is entering the data

o When the data entry is complete the data is displayed on the screen and the user is
asked to confirm that it is correct before continuing

o The user either checks the data on the screen against a paper document that is being
used as an input form or check from their own knowledge

Page 7

7.6 Test data

202454838 23:27

7.6.1 How to suggest and apply suitable test data

e Purpose of using test data
¢ Check that the program works as expected
e Check for logic/runtime errors
¢ Check that the program rejects any invalid data that is input
¢ Check that the program only accepts reasonable data
e Types of test data
¢ Normal data
o Data that the algorithm would normally use
e Abnormal data (or erroneous data)
o Data that should be rejected
e Extreme data
o Data at the outer extremes of the range
e Boundary data
o Normal data on the valid boundary and abnormal data on the valid boundary
o Boundary datais in a pair e.g. 0 and -1, 100 and 101

Page 8

8.1 Programming concepts

202454838 23:28

8.1.6 Procedures and functions

Procedure

pseudocode //Code
Function

pseudocode //Code
Procedure

¢ A set of programming statements grouped together under a single name that can be called to
perform a task at any point in a program
¢ A procedure needs to be called (CALL in Pseudocode)
e Parameters may be passed to the procedure to be used
Function
¢ Aset of programming statements grouped together under a single name that can be called to
perform a task at any point in a program
¢ In contrast to a procedure, a function will return a value back to the main program
e A function is used as part of an expression and is called by its identifier
e Parameters may be passed to the function to be used
Parameters
¢ Are the variables that store the values of the arguments passed to a procedure or function
e Some but not all procedures and functions will have parameters.
Why procedures / functions
¢ It enables many programming statements to be grouped together using a single identifier
¢ Procedures / functions can be reused in the same program or other programs / create
modular programs
¢ Less duplicated code is required - shorter program
¢ Different programmers can work on different procedures / functions in the same project at
the same time which speeds up development
Why parameters
e To pass values from the main program to a procedure / function
¢ So that they can be used in the procedure / function
e Parameters mean that the same procedure can be used with different data

8.1.7 Library routines
Definition
e A standard subroutine that is available for immediate use.

DIV (<identifierl>, <identifier2>)

Returns the quotient of identifierl divided by identifier? with the fractional part discarded.

MOD (<identifierl>, <identifier2>)

Returns the remainder of identifier] divided by identifier?

The identifiers are of data type integer.

Examples — MOD and DIV

DIV (10, 3) returns 3
MOD (10, 3) returns 1

Page 9

ROUND (<identifier>, <places>)
Returns the value of the identifier rounded to places number of decimal places.

The identifier should be of data type real, places should be data type integer.

RANDOM ()
® Returns a random number between 0 and 1 inclusive.

Example - ROUND and RANDOM

Value < ROUND (RANDOM() * &, 0) // returns a whole number between 0 and 6

8.1.8 Creating a maintainable program
e Why does a program need to be maintainable
¢ People need to be able to know what the program does when it is altered by someone else /
altered after a long period of time
¢ A program might not have any documentation attached to it and therefore it is only the actual
code that can be used to work out what the program does.
¢ Using meaningful identifiers, including comments and splitting up the program using
procedures and functions can make a program easier to understand, follow and maintain
* Methods to do so
¢ Meaningful identifiers
o Identifiers for variables, constants, arrays and procedures and functions should all be
clear and meaningful
o They will help the programmer / future programmers to recognise the purpose of a
variable as well as tracking it through a program
e Comments
o Ensures that a programmer can easily find specific sections as well as knowing the
purpose of that section of the code.
¢ Procedures and functions
o Code can be split into smaller sections using procedures and functions (subroutines or
modules)
o Modular programs are easier to update, understand, debug and maintain compared to
one large program
¢ White space

Page 10

String handling

202454838 23:14

String operations (8.1.4 (e))
LENGTH (<identifier>)

Returns the integer value representing the length of string. The identifier should be of data type string.

LCASE (<identifier>)

Returns the string/character with all characters in lower case. The identifier should be of data type string or char.

UCASE (<identifier>)
Returns the string/character with all characters in upper case. The identifier should be of data type string or char.

SUBSTRING (<identifier>, <start>, <length>)

Returns a string of length length starting at position start. The identifier should be of data type string, length
and start should be positive and data type integer.

Generally, a start position of 1is the first character in the string.

Example — string operations

LENGTH ("Happy Days") will return 10

LCASE ('W') will return 'w"'

UCASE ("Happy") will return "HAPPY"

SUBSTRING ("Happy Days", 1, 5) willreturn "Happy"

Page 11

8.3 File handling

202454838 23:15

8.3.1 Purpose of storing data in a file
e When running a program, any data that is entered into the program will be lost when the program is
completed
e Therefore, if data is required again by a computer program it can be stored in a file.
e Benefits
¢ Data can be stored permanently
¢ Data can be accessed by the same program at a later date
¢ Data can be accessed by another program
¢ Data can be sent to another computer
¢ Data can be used as a back up of the data

8.3.2 Using files

ExampleString : STRING
//Declares the ExampleString variable

, ExampleString
//Reads the contents of FileA.txt and assigns it to ExampleString

, ExampleString
//writes the value of ExampleString to FileB.txt

Handling files (8.3.2)

It is good practice to explicitly open a file, stating the mode of operation, before reading from or
writing to it. This is written as follows:

OPENFILE <File identifier> FOR <File mode>

The file identifier will be the name of the file with data type string. The following file modes are used:

READ for data to be read from the file

WRITE for datato be written to the file. A new file will be created and any existing data in the file
will be lost.

A file should be opened in only one mode at a time.

* Datais read from the file (after the file has been opened in READ mode) using the READFILE
command as follows:

READFILE <File Identifier>, <Variable>
When the command is executed, the data item is read and assigned to the variable.

Data is written into the file after the file has been opened using the WRITEFILE command as
follows:

WRITEFILE <File identifier>, <Variable>

When the command is executed, the data is written into the file. Files should be closed when they are
no longer needed using the CLOSEFILE command as follows:

CLOSEFILE <File identifier>

Page 12

9.1 Databases

2023568 19H 18:49

9.1.1 Databases intro
Database
¢ Simply a collection of data that holds details about people, things or events
¢ The data is structured carefully so that information can be extracted from the database as
needed.
Table
¢ Atable contains data about one type of person, thing or event
¢ Given a meaningful name
Record
e Arecordin a table contains data about a single person, thing or event
e Rows
Field
¢ Afield contains a specific piece of data about each single item and will have a field name
e Columns
Validation
e Type
o Data entered is of a given data type
e Format
o Check that the characters entered confirm to a pre-defined pattern
e Range
o The value of a number is between an upper value and a lower value
® Presence
o0 Ensure that some data has been entered and the value has not been left blank
e Length
o Either:
= The data contains an exact number of characters
= Data entered is a reasonable number of characters
¢ Check digit
o The final digit included in a code calculated from all the other digits in the code
o Used to identify errors in data entry caused by mis-typing or mis-scanning a barcode

9.1.2 Data types in databases
Data types

e Text/alphanumeric

e Character

e Boolean

e |nteger

¢ Real

e Date/time

9.1.3 Primary keys
Primary Key
¢ Contains no repeating values
¢ A field used to uniquely identify each record in a database table
¢ An existing field could be used as a primary key or and additional field needs to be added
Using existing field / adding a field
e Existing field
o Some data will already contain a field that has unique values
o The field can be used for the primary key
o e.g. ISBN for books
¢ Adding a field

Page 13

o Other data has fields which all contain repeating data
o Another field has to be added to create a unique identifier
o This could simply be an incrementing number e.g. unique number for each student

9.1.4 Structured Query Language (SQL)

, (choose the fields to display)

dentify the table the contains the data)
= "Fantasy"; (specify the records to display by identifying criteria)

A SELECT * includes every field

A Operators: = equal to, <> not equal to, > greater than, < less than, >= greater than or equal to, <= less than or

equal to

e ORDERBY
SELECT HospitalNumber, FirstName, FamilyName

FROM PATIENT
WHERE Consultant = 'Mr Smith'

ORDER BY FamilyName;

e ORDER BY FamilyName DESC; would order the list in descending order (Z-A, 100-1) by
FamilyName

e ORDER BY FamilyName, FirstName; would sort the output by FamilyName and then FirstName

e SELECT SUM (BedNumber)
e FROM PATIENT
e WHERE Consultant = "Mr Smith";
e Only integer / real fields
e COUNT
e SELECT COUNT (FirstName)
e FROM PATIENT
e WHERE WardNumber = 6;
¢ Can be used on any field

Page 14

10.1-2 Logic gate symbols and functions

202355H15H 18:42

Types of logic gates

Name | Symbol and Screenshot from the simulator | Truth Table Logic Notation
NOT | > . Input | Output X=NOTA

A X

0 1

1 0
AND

_D— Input |Input | Output | X=AANDB
— 5 B :

= | = | O | O
= O | | O
= O |0 | O

OR —D_ Input | Input | Output || X=AORB
T A B X

= | = O O
= |O | = |O
| == O

XOR jD_ Input | Input | Output || X=AXORB
A B X

Rk, oo
L ol|lr | o
olr|r|o

NAND | — >) Input |Input | Output X=ANAND B
= A B X

= | = O O
ok |o
O|lRr |k | kK,

NOR —D Input | Input | Output || A=ANORB
T A B X

0 0 1
0 1 0

Page 15

Page 16

