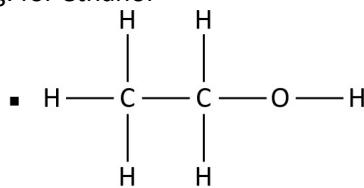


4.1.1 Basic concepts of organic chemistry

Definitions

Term	Definition
Functional group	A group of atoms responsible for the characteristic reactions of a compound
Homologous series	A series of organic compounds having the same functional group but with each successive member differing by CH₂
Saturated	All carbon to carbon bonds are single bonds
Unsaturated	Contain carbon to carbon multiple bonds (C=C or C≡C)
Hydrocarbons	Substances containing carbon and hydrogen atoms only
Isomerism	Compounds with the same molecular formula but different arrangements of atoms in space
Structural isomers	Compounds with the same molecular formula but different structural formulae

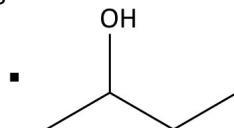
Basic definitions

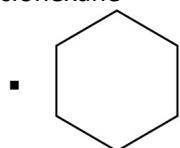

- Alkyl group
 - General formula C_nH_{2n+1}
 - Found on side chains of organic molecules
- Types of hydrocarbons
 - Aliphatic
 - A compound containing carbon and hydrogen joined together in straight chains, branched chains or non-aromatic rings
 - Alicyclic
 - An aliphatic compound arranged in non-aromatic rings with or without side chains
 - Aromatic
 - A compound containing a **benzene ring**
- Stem prefix

Number of carbon atoms	Prefix
1	Meth-
2	Eth-
3	Prop-
4	But-
5	Pen-
6	Hex-
7	Hept-
8	Oct-
9	Non-
10	Dec-

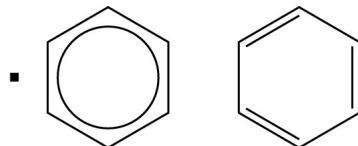
- Types of formulae (definition not required)
 - General formula
 - The simplest algebraic formula of a member of a homologous series
 - e.g. for an alkane: C_nH_{2n+2}
 - Structural formula
 - The minimal detail that shows the arrangement of atoms in a molecule
 - e.g. for butane: $CH_3CH_2CH_2CH_3$ or $CH_3(CH_2)_2CH_3$

- Displayed formula


- Shows the relative positioning of atoms and the bonds between them
- e.g. for ethanol


- Skeletal formula

- The simplified organic formula, shown by removing hydrogen atoms from alkyl chains, leaving just a carbon skeleton and associated functional groups


- e.g. for butan-2-ol

- Cyclohexane

- Benzene

- Types of covalent bond fission

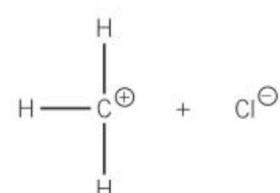
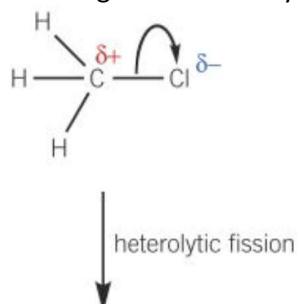
- Homolytic fission

- **Each bonding atom receiving one electron** from the bonded pair forming 2 radicals

- Heterolytic fission

- **One bonding atom receiving both electrons** from the bonded pair
- The atom that takes both electrons becomes a negative ion
- The atom that does not take the electrons becomes a positive ion
- e.g. $\text{H}_3\text{C}-\text{Cl} \rightarrow \text{H}_3\text{C}^+ + \text{Cl}^-$

- Radical



- A species with **an unpaired electron**

- Represented with a dot (\bullet)
- e.g. $\text{H}_3\text{C}-\text{CH}_3 \rightarrow \text{H}_3\text{C}\bullet + \bullet\text{CH}_3$

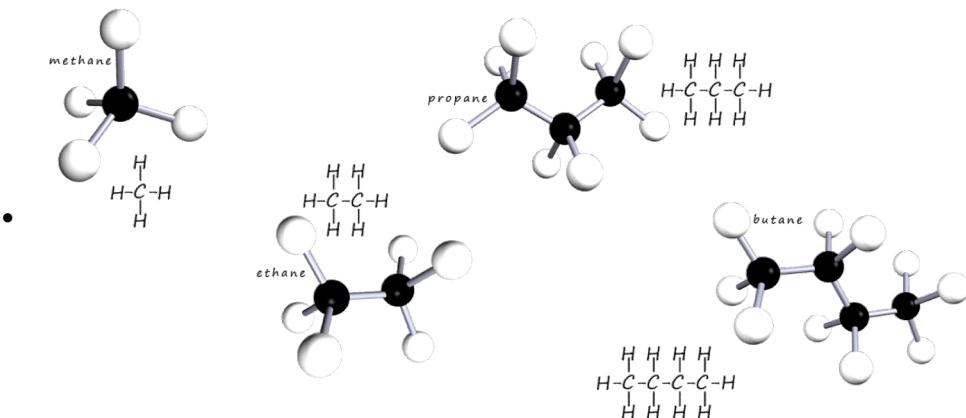
- Curly arrows

- Showing the **movement of an electron pair**

- Showing either heterolytic fission or formation of a covalent bond

- Types of reaction

- Addition reaction
 - Two or more reactants join together to form one product
- Substitution reaction
 - An atom or group of atoms is replaced by a different atom or group of atoms
- Elimination reaction
 - Involves the removal of a small molecule from a larger one
 - One reactant molecule forms two products

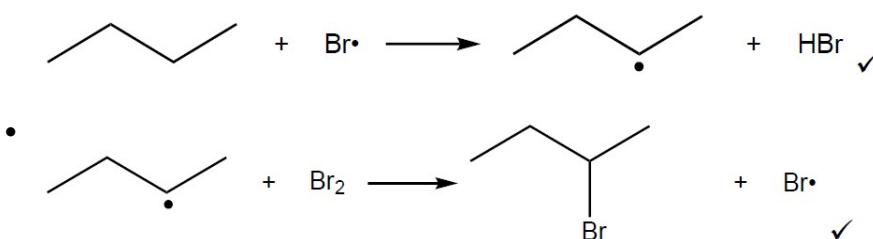

4.1.2 Alkanes

Definitions

Term	Definition
Free radical	A species with an unpaired electron
Chain reaction	A reaction in which the propagation steps release new radicals that continue the reaction
Initiation	The first stage in a radical reaction in which radicals form when a covalent bond is broken by homolytic fission
Propagation	The steps that continue a free radical reaction, in which a radical reacts with a reactant molecule to form a new molecule and another radical, causing a chain reaction
Termination	The step at the end of a radical substitution when two radicals combine to form a molecule

Properties of alkanes

- Bonding in alkanes
 - Saturated hydrocarbons
 - Only carbon and hydrogen atoms joined together by single covalent bonds
 - Bond type = σ -bond (sigma bond)
 - σ -bond = **heads on** overlap of orbitals directly between the bonding atoms
 - One orbital from each bonding atom, each containing one electron
 - Positioned on a line directly between bonding atoms
 - Atoms can rotate freely around the σ -bond
- Shape of alkanes
 - Tetrahedral shape around each carbon atom, bond angle 109.5°
 - Each carbon atom surrounded by 4 bonded pairs in four σ -bonds
 - The electron pairs repel each other as far away as possible



- Effect of chain length on boiling points
 - Longer chain length = higher boiling point
 - Increased chain length = **greater surface area of contact** + more electrons
 - Stronger London forces
 - More energy is required to overcome the London forces
- Effect of branching on boiling points
 - More branching = lower boiling point
 - More branches = fewer surface area of contact \rightarrow weaker London forces

- The branches prevent the branched molecules getting as close together as straight-chain molecules → further decrease intermolecular forces
- Less energy is required to overcome the London forces

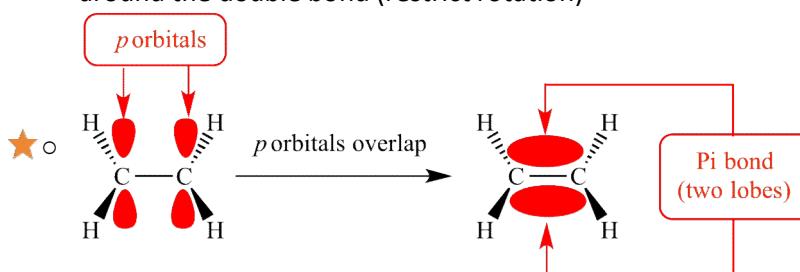
Alkane reactions

- Reactivity of alkanes
 - Low reactivity
 - C-C and C-H σ -bonds are strong as they have a high bond enthalpy
 - C-C bonds are non-polar
 - C-H bond can be considered non-polar as the electronegativities of C and H are very similar
- Combustion of alkanes
 - Complete combustion (sufficient oxygen present)
 - Equation: $C_xH_{2x+2} + \left(\frac{3x+1}{2}\right) O_2 \rightarrow xCO_2 + (x+1)H_2O$
 - Incomplete combustion (insufficient oxygen present)
 - Hydrogen atom always oxidised to water
 - Combustion of carbon may be incomplete so carbon (soot) or carbon monoxide is formed instead of CO_2
 - Carbon monoxide is toxic + colorless and odorless so it is difficult to spot
 - CO combines irreversibly to haemoglobin and replace oxygen so oxygen cannot pass round the body and the person can suffocate
- Alkane is a good source of fuel
 - Release large amounts of energy when burned
 - Easy to transport
- Methane and chlorine reaction
 - Equation: $R-CH_3 + X_2 \rightarrow R-CH_2X + HX$
 - Type: free radical substitution
 - Step 1: initiation
 - The halogen-halogen bond is broken by **homolytic fission** to form 2 free radicals
 - Energy for bond fission is provided by UV radiation
 - e.g. $Cl_2 \xrightarrow{u.v.} 2Cl\cdot$
 - Step 2: propagation (halogen radical intermediate react with original reactants)
 - One free radical reacts to produce another different free radical
 - Always in 2 steps
 - First propagation step: $Cl\cdot + CH_4 \rightarrow \cdot CH_3 + HCl$
 - Second propagation step: $\cdot CH_3 + Cl_2 \rightarrow CH_3Cl + Cl\cdot$
 - A halogen radical **acts as an catalyst and is recreated**
 - Step 3: termination
 - Two free radicals combine and their unpaired electrons pair up to form a covalent bond between the 2 species
 - $Cl\cdot + \cdot Cl \rightarrow Cl_2$ / $\cdot CH_3 + \cdot CH_3 \rightarrow C_2H_6$ / $\cdot CH_3 + \cdot Cl \rightarrow CH_3Cl$
 - Both radicals are removed from the reaction mixture so the reaction stops
 - (Same equation for bromine atoms)
- Skeletal formulae for free radical substitution

- Dot on the carbon atom with hydrogen atom removed
- Limitations of radical substitution in synthesis
 - Further substitution
 - The propagation step can continue many times as it is a chain reaction
 - Conditions can be altered to favour the termination step and limit the number of

substitutions

- Substitution at different positions in a carbon chain
 - Longer chain = a mixture of monosubstituted isomers formed by substitution at different positions of the chain
 - Different chains can also undergo further substitution
- Produces different termination products (more than one possible termination step)


4.1.3 Alkenes

Definitions

Term	Definition
Electrophile	An atom or group of atoms which is attracted to an electron-rich centre of atom, where it accepts a pair of electrons to form a new covalent bond, usually a cation or an atom or molecule with $\delta+$ dipole
Electrophilic addition	An addition reaction in which the first step is attack by an electrophile on a region of high electron density
Addition polymerisation	Formation of a very long molecular chain, by repeated addition reactions of many unsaturated alkene molecules (monomers)

Properties of alkene

- Structure of C=C bond
 - Comprised of
 - A σ -bond: **head on overlap** of orbitals directly between the bonding atoms
 - A π -bond: **sideways overlap** of **adjacent p-orbitals** above and below the bonding carbon atoms
 - The π -bond locks the two carbon atoms in position and prevents them from rotating around the double bond (restrict rotation)

- Trigonal planar shape around each carbon atom in the C=C bond (120° bond angle)
 - 3 regions of electron density around each carbon atom (3 bonding regions)
 - The 3 regions repel each other as far apart as possible

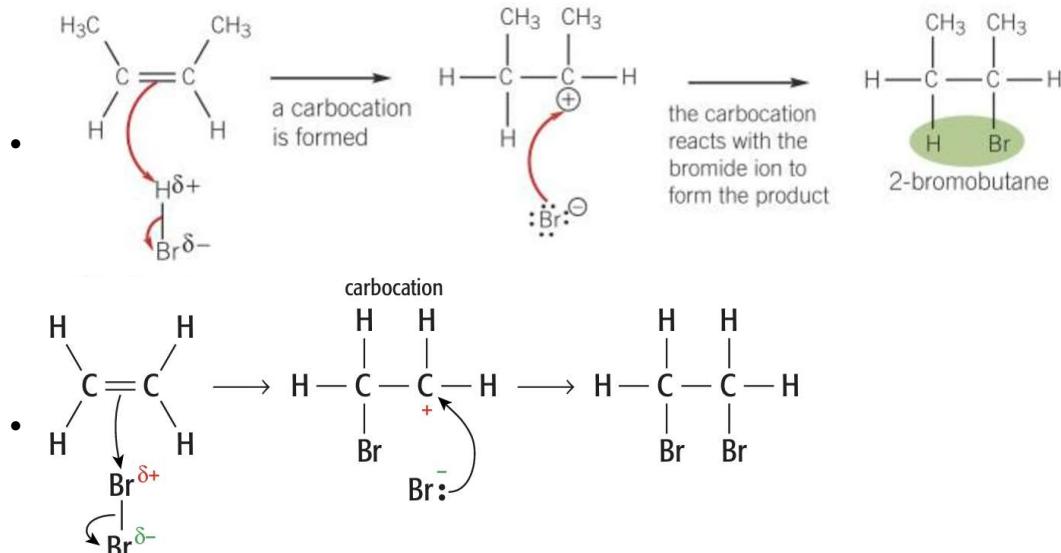
- σ and π -bond difference

	σ -bond	π -bond
Position of electron density	Between bonding atoms	Above and below bonding atoms
Overlap of orbitals	Head on overlap of orbitals	Sideways overlap of orbitals
Bond enthalpy / strength	Higher	Lower
Size	Larger	Smaller

Stereoisomerism in alkenes

- Stereoisomer
 - Compounds with the **same structural formula** but with a **different arrangement in space**
- E/Z isomerism / geometrical isomerism
 - An type of stereoisomerism
 - Different groups attached to each carbon atom of a C=C double bond may be arranged differently in space because of the restricted rotation about the C=C bond
 - Rotation about a double bond is restricted (due to the π -bond) so the groups attached to each carbon atom are fixed relative to each other
- Conditions for E/Z isomerism
 - A C=C double bond
 - Two different groups** to be attached to **each carbon atom** of the double bond

- **Cis-trans isomerism**
 - A special case of E/Z isomerism
 - **One of the attached groups on each carbon atom of the double bond must be the same**
 - Same group on same side = cis, same group on different sides = trans (only works if there is a hydrogen atom bonded to both carbon atoms)

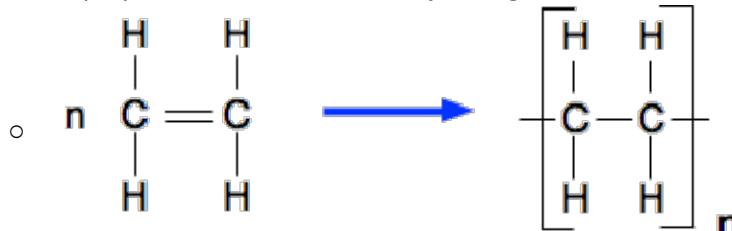

- Identify E/Z isomers by Cahn-Ingold-Prelog (CIP) priority rules
 - Assigning priority
 - Examine the atomic number of the atoms directly attached to the carbon atoms of the double bond
 - Higher atomic number = higher priority
 - Two same atoms attached to the carbon atom
 - Find the first point of difference
 - Higher atomic number at first point of difference = higher priority
 - The groups of higher priority are on the **same side = Z isomer**
 - The groups of higher priority are **diagonally placed across the double bond = E isomer**

Addition reactions of alkenes

- Reactivity of alkenes
 - Much more reactive than alkanes
 - Relative low bond enthalpy of the π -bond so it is broken more readily
 - It is on the outside of the σ -bond so its electrons are more exposed
- Addition reactions of alkanes

Reaction	Condition	Detail
Hydrogenation	<ul style="list-style-type: none"> • Nickel catalyst • 423 K (150°C) • High pressure 	<ul style="list-style-type: none"> • Alkene + hydrogen \rightarrow alkene / $R-CH=CH_2 + H_2 \rightarrow R-CH_2-CH_3$ • Type: hydrogenation / addition
Halogenation	<ul style="list-style-type: none"> • RTP 	<ul style="list-style-type: none"> • Alkene + halogen \rightarrow dihaloalkane e.g. $R-CH=CH_2 + Br_2 \rightarrow R-CHBr-CH_2Br$ • Type: electrophilic addition (see below for mechanism) • Reaction of alkenes with bromine can be used to test if the organic compound is unsaturated <ul style="list-style-type: none"> • Bromine water added dropwise to alkene • Bromine adds across the double bond • The orange colour of bromine water disappears • Added to a saturated compound: no addition reaction so no colour change
Addition with (gaseous) halogen halides	<ul style="list-style-type: none"> • RTP 	<ul style="list-style-type: none"> • Alkene + halogen halide \rightarrow haloalkane e.g. $R-CH=CH_2 + HBr \rightarrow R-CHBr-CH_3$ • Type: electrophilic addition (see below for mechanism) • Alkene is a gas: reaction takes place when the two gases are mixed • Alkene is a liquid: hydrogen halide bubbled through it • Can also react with concentrated hydrochloric or hydrobromic acid * Two possible products
Hydration	<ul style="list-style-type: none"> • Steam • Phosphoric acid (H_3PO_4) catalyst 	<ul style="list-style-type: none"> • Alkene + $H_2O_{(g)}$ \rightarrow alcohol • Type: hydration • $R-CH=CH_2 + H_2O \rightarrow R-CH(OH)-CH_3$ * Two possible products

- Electrophilic addition mechanisms
 - Electrophile = $\delta+$ atom (accepts the π -electrons from the double bond)
 - Electron pair in the π -bond is attracted to the $\delta+$ atom \rightarrow double bond breaks
 - A bond forms between the $\delta+$ atom and a carbon atom from the double bond
 - The bond in the molecule breaks by heterolytic fission, electron pair goes to the $\delta-$ atom
 - An anion and a carbocation (positively charged carbon atom) are formed
 - They react to form the addition product


- Types of carbocations

Type	Definition
Primary	1 alkyl group attached to the positively charged carbon atom
Secondary	2 alkyl groups attached to the positively charged carbon atom
Tertiary	3 alkyl groups attached to the positively charged carbon atom

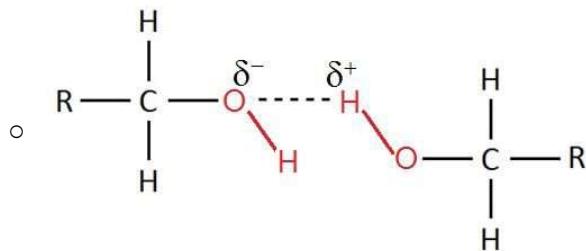
- Using Markownikoff's rule to predict formation of major organic product
 - For **unsymmetrical alkanes**
 - **Major product is formed from the most stable carbocation intermediate**
 - Stability: tertiary carbocation > secondary carbocation > primary carbocation
 - Halide / OH^- ion attached to the carbon atom attached to the carbon atom with the **least hydrogens attached / most alkyl groups attached**
 - The hydrogen attaches itself to the carbon atom with the **most hydrogens attached**

Polymers

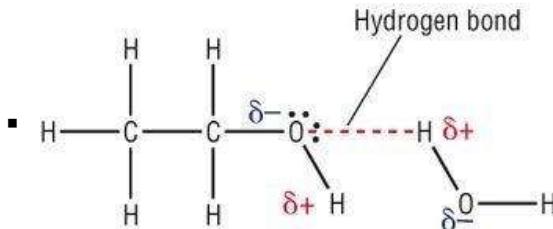
- Addition polymerisation of alkenes
 - Short chain monomers join together to form long chain polymers **under high pressure**
 - Double bond of the alkene is replaced by single bonds to form a repeating unit + bond with other monomers to form the polymer
 - Addition polymers as the short chains join together to form **a single product**

- Problems of waste polymers
 - Benefits of cheap oil-derived plastics are counteracted by problems for the environment of landfill
 - They are unreactive so they are non-biodegradable and cannot be broken down by species in nature
 - Non-biodegradable waste polymers can become a threat to wildlife

- Reducing the effect of waste polymers
 - Choose plastic items that are made from polymers that can be recycled
 - Re-use plastic items at many time as possible
 - Try to recycle plastic items
- Ways of processing waste polymers
 - Recycle
 - High cost of collection and re-processing
 - The different types of polymer have to be separated
 - Combustion to **release heat energy for generating electricity**
 - Toxic fumes produced from burning halogenated polymers
 - HCl is removed during the combustion of chlorine containing haloalkanes
 - CO produced during incomplete combustion
 - Can be removed by scrubbing in the chimney
 - Greenhouse gases can be released which causes global warming
 - Organic feedstock
 - Use the waste for the production of useful organic compounds
 - New technology can convert waste into hydrocarbons
 - Hydrocarbons can then be turned back into polymers
- New types of polymers
 - Biodegradable polymers
 - Broken down by microorganisms into water, CO₂ and organic compounds
 - Compostable polymer degrade and leave no visible or toxic residues
 - e.g. can be used as bin liners for food waste
 - Photodegradable polymers
 - Contain weak bonds that break when they absorb light energy
 - Benefits
 - Conserve fossil fuel reserves
 - Reduce pollution from disposing polymers


4.2.1 Alcohols

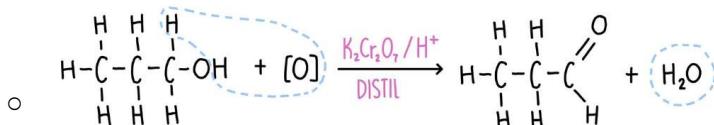
Definitions


Term	Definition
Dehydration	A water molecule is removed from the starting material

Properties of alcohols

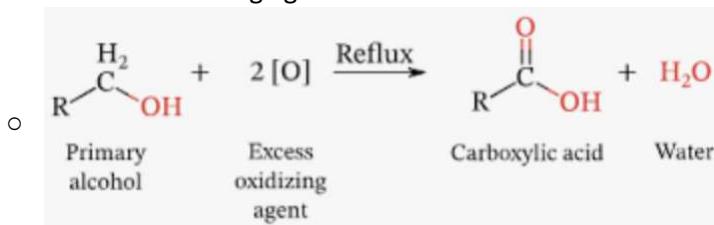
- Alcohol structure
 - Functional group = -OH (hydroxyl group)
 - Has **polar and non-polar** parts
 - The O-H bond is **polar** (oxygen is more electronegative than hydrogen)
 - The side chain is **non-polar**
 - so alcohol can mix with both polar and non-polar liquids
- Alcohol properties
 - Higher melting & boiling point than alkanes
 - Induced dipole-dipole interactions between the non-polar side chains
 - Strong hydrogen bonds** + permanent dipole-dipole interactions between alcohol molecules hold them together (stronger than London forces)
 - Extra heat energy is required to break the strong hydrogen bonds

- Greater water solubility than alkenes
 - Alkanes are non-polar so they cannot form **hydrogen bonds / PDD** with water
 - O-H bond in alcohol is polar and forms **hydrogen bond with water**

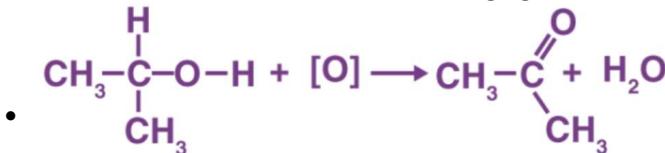

- Longer carbon chain = less miscible in water
- More -OH groups = more miscible in water

- Classifying alcohols
 - Primary: -OH group attached to a carbon atom attached to **2 hydrogen atoms + 1 alkyl group**
 - Secondary: -OH group attached to a carbon atom attached to **1 hydrogen atom + 2 alkyl groups**
 - Tertiary: -OH group attached to a carbon atom attached to **no hydrogen atoms + 3 alkyl groups**

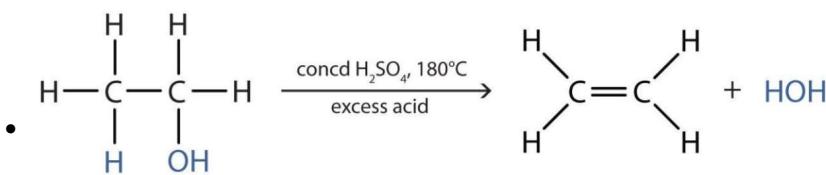
Reactions of alcohols


- (Complete) combustion of alcohols
 - Alcohol + oxygen → carbon dioxide + water
 - Exothermic reaction
 - A large quantity of energy released in the form of heat
 - Burn with a clear blue flame

- More carbon atoms in the alcohol chain = more heat energy released per mole
- Alcohols undergo complete combustion more often than alkanes due to the oxygen atom in the molecule
- Oxidation of alcohols
 - Heat with an oxidising agent ($[O]$)
 - Normally acidified dichromate (VI) ($\text{Cr}_2\text{O}_7^{2-} / \text{H}^+$)
 - e.g. acidified potassium dichromate (VI) ($\text{K}_2\text{Cr}_2\text{O}_7 / \text{H}_2\text{SO}_4$)
 - Observations
 - Cr will be reduced
 - Reaction mixture turn from orange (Cr^{6+} in $\text{Cr}_2\text{O}_7^{2-}$) to green (Cr^{3+})
- Oxidation of primary alcohols
 - Gentle heating + **distillation** = aldehyde formed
 - Aldehyde distilled out of the reaction mixture as it forms to prevent any further reaction (distil)

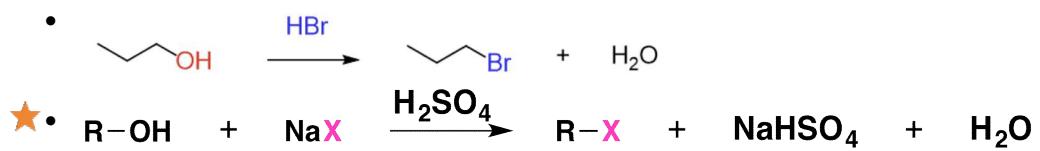

PROPANOL PROPANAL

- Heated strongly + **reflux** + **excess of acidified potassium dichromate (VI)** = carboxylic acid
 - Reflux = ensure that all aldehyde formed initially also oxidised to carboxylic acid
 - Excess of oxidising agent = ensure that all alcohol is oxidised


Primary alcohol Excess oxidising agent Carboxylic acid Water

- Oxidation of secondary alcohols
 - Oxidised to ketones with an oxidising agent (acidified dichromate (VI) ions)
 - **Ketones cannot be further oxidised**
 - Heated under **reflux** with the oxidising agent to ensure that the reaction goes to completion

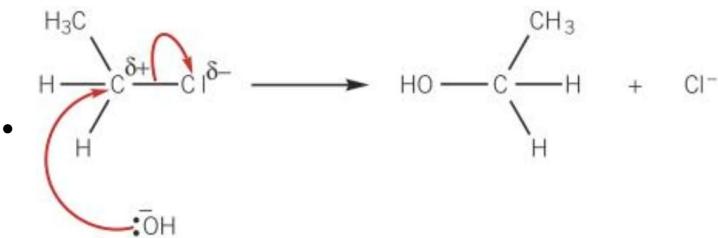
Propan-2-ol Propanone


- Oxidation of tertiary alcohols
 - Do not undergo oxidation reactions
 - Acidified dichromate (VI) ions remain orange when added to a tertiary alcohol
- Dehydration of alcohols
 - Heated under **reflux** with **concentrated acid catalyst** (e.g. concentrated $\text{H}_2\text{SO}_4 / \text{H}_3\text{PO}_4$)
 - Product = an alkene
 - Type = elimination reaction

Ethanol Ethylene

- Substitution reaction of alcohols
 - Alcohols react with halide ions to form haloalkanes
 - Heated under **reflux** with **concentrated acid catalyst** & halide ion e.g. $\text{H}_2\text{SO}_4 + \text{NaBr}$
 - Acid need to be concentrated to minimise back reactions

Alcohols can be converted to Alkyl Halides with HX acids


4.2.2 Haloalkanes

Definitions

Term	Definition
Nucleophile	An atom or group of atoms which is attracted to an electron-deficient centre or atom, where it donates a pair of electrons to form a new covalent bond
Nucleophilic substitution	A reaction in which a nucleophile is attracted to an electron-deficient centre or atom, where it donates a pair of electrons to form a new covalent bond
Hydrolysis	A reaction with water that breaks a chemical compound into two compounds, the H and OH in a water molecule becomes incorporated into the two compounds

Haloalkane reactions

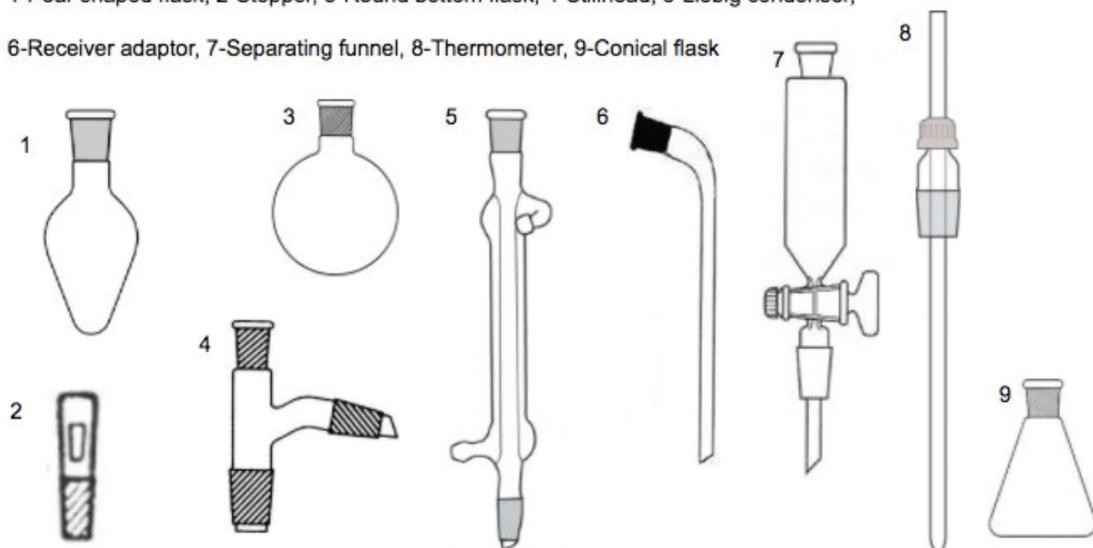
- Reactivity of haloalkanes
 - Reactivity: alkenes > haloalkanes > alkanes
 - Halogen atoms are more electronegative than carbon atoms so the carbon-halogen bond is polar
 - $\delta+$ on carbon can attract nucleophiles (contain a lone pair of electrons)
 - The nucleophile replaces the halogen atom
 - A new compound with a different functional group is formed
- Hydrolysis mechanism
 - Nucleophilic substitution**
 - OH^- normally from NaOH
 - OH^- (nucleophile) approaches the carbon atom attached to the halogen from the opposite side of halogen to minimise repulsion
 - A lone pair on OH attracted & donated to $\delta+$ carbon atom
 - New bond formed between oxygen atom of OH and the carbon atom
 - Carbon-halogen bond breaks by heterolytic fission**
 - Alcohol + halide ion formed

- Trend in reaction rates of hydrolysis of primary haloalkanes
 - C-F has the greatest bond enthalpy (strongest), C-I has the lowest bond enthalpy (weakest)
 - Going down the table = larger halogen atom = longer bond = bond becomes weaker
 - Rate: iodoalkanes > bromoalkanes > chloroalkanes > fluoroalkanes
 - Rate increases as the **bond enthalpy** of carbon-halogen bond decreases
 - C-I bond is the **weakest (lowest bond enthalpy)**, C-F bond is the **strongest (highest bond enthalpy)**
 - Less energy is needed to break the carbon-halogen bond to start the reaction so the activation energy is lower
- Measuring rate of hydrolysis
 - Set up 3 test tubes of 1 cm^3 ethanol and couple drops of 1-chlorobutane / bromobutane / iodobutane
 - Slow down the reaction so we can measure the reaction time easier
 - Put the test tubes + a test tube with silver nitrate in water bath at 60°C
 - Allow them to reach constant temperature (60°C)
 - Add 1 cm^3 of silver nitrate to each test tube quickly + start stop watch
 - Observe time taken for precipitate to form
 - Chlorine = white, bromine = cream, iodine = yellow

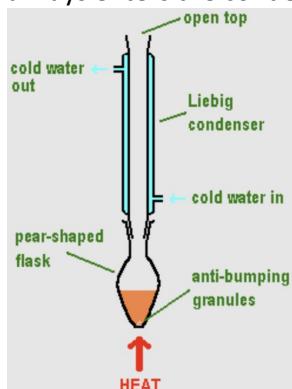
- Speed: iodobutane > bromobutane > chlorobutane

Organohalogen compounds and the ozone layer

- CFCs
 - Shorthand for chlorofluorocarbons
 - Compounds containing carbon with chlorine and fluorine atoms attached
- Uses of CFCs
 - CFCs are non-flammable and not very toxic so they have a lot of uses
 - Refrigerants
 - Propellants for aerosols
 - Generating foamed plastics
 - Solvents for dry cleaning and for general degreasing purposes
- Problems associated with CFCs
 - Global warming
 - Breakdown of ozone layers in the atmosphere
- Ozone layer
 - Ozone continually formed and broken down by the action of UV radiation
 - Initially very high energy UV breaks oxygen molecules into oxygen radicals: $O_2 \rightarrow 2O$
 - A steady state then set up where rate of ozone formation is the same as the rate of ozone being broken down: $O_2 + O \rightleftharpoons O_3$
 - Equilibrium disturbed by human activities e.g. production and use of CFCs
- How CFCs break down ozone
 - CFCs remain stable until they reach the stratosphere
 - In the stratosphere UV breaks carbon-halogen bond by homolytic fission to form radicals (initiates the breakdown of ozone)
 - Photodissociation (Initiation): e.g. $CF_2Cl_2 \rightarrow CF_2Cl\cdot + Cl\cdot$
 - Chlorine radical formed is a very reactive intermediate and can react with an ozone molecule
 - Propagation step 1: $Cl\cdot + O_3 \rightarrow ClO\cdot + O_2$
 - Propagation step 2: $ClO\cdot + O \rightarrow Cl\cdot + O_2$
 - (Overall: $O_3 + O \rightarrow 2O_2$)
 - There is a significant amount of O_3 and free oxygen atoms in the upper atmosphere for reaction
 - Chlorine radical can go on in chain reaction to break down other ozone molecules
- How nitrogen oxide break down ozone
 - Reaction with NO
 - Initiation: $NO \rightarrow N\cdot + O\cdot$
 - Propagation step 1: $N\cdot + O_3 \rightarrow NO\cdot + O_2$
 - Propagation step 2: $NO\cdot + O \rightarrow N\cdot + O_2$
 - Overall: $O_3 + O \rightarrow 2O_2$
 - Reaction with NO_2
 - Initiation: $NO_2 \rightarrow NO\cdot + O\cdot$
 - Propagation step 1: $NO\cdot + O_3 \rightarrow NO_2\cdot + O_2$
 - Propagation step 2: $NO_2\cdot + O \rightarrow NO\cdot + O_2$
 - Overall: $O_3 + O \rightarrow 2O_2$
- Alternatives for CFCs
 - Replace the C-Cl bond with stronger C-F bond
 - Hydrochlorofluorocarbons (HCFCs) or hydrofluorocarbons (HFCs) can be used
 - Still volatile, non-toxic and non-flammable
 - Still damage the ozone layer
 - Replace the C-Cl bond with a C-H bond
 - Use hydrocarbons
 - The C-H bond is much weaker and the molecules don't persist until they reach the upper atmosphere
 - They are very flammable

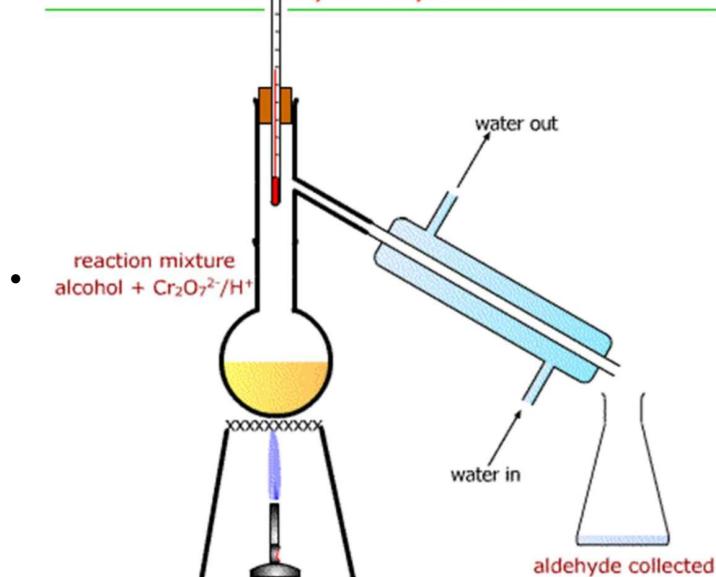

4.2.3 Organic synthesis

Definitions

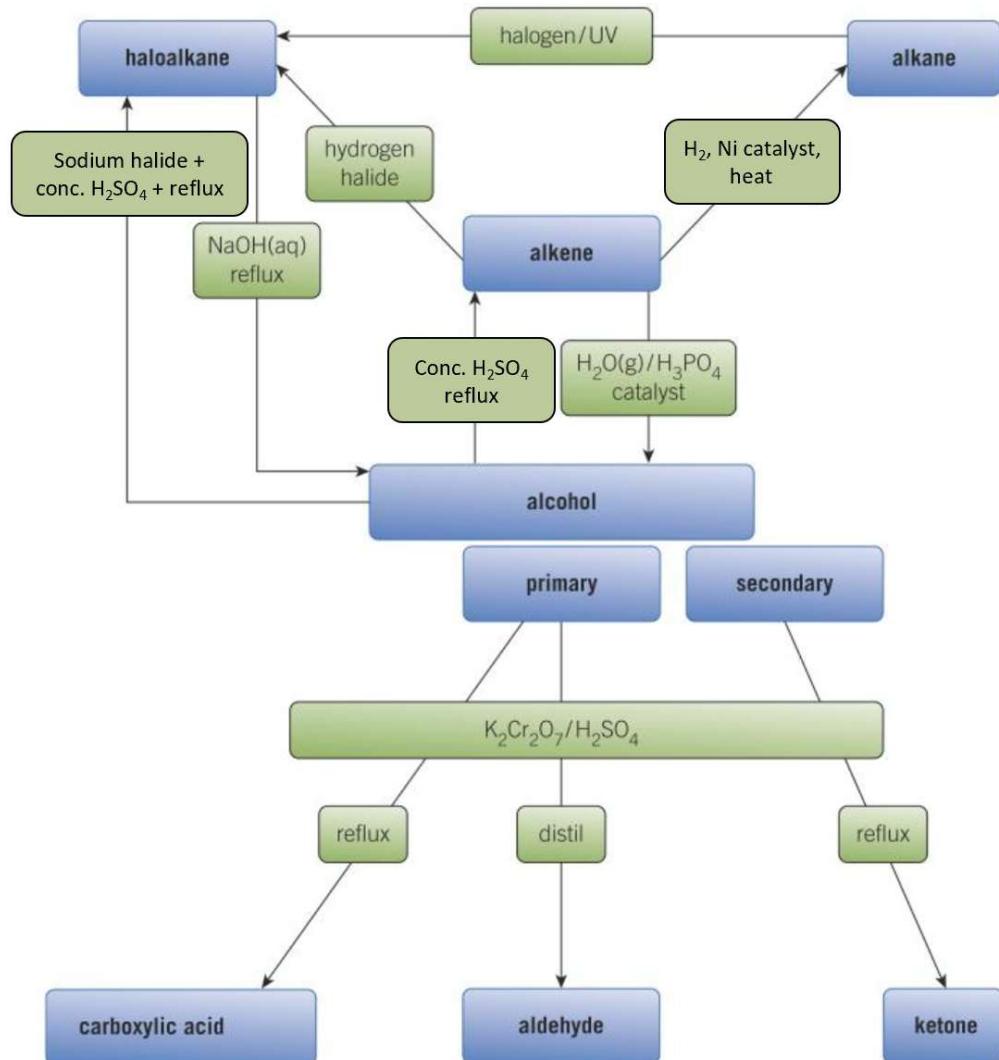

Term	Definition
• Fractional distillation	The separation of components in a liquid mixture by their different boiling points into fractions with different compositions
• Drying agent	An anhydrous solid that readily absorbs water from the mixture to become hydrated

Practical techniques

- Quickfit apparatus set
 - 1-Pear shaped flask, 2-Stopper, 3-Round bottom flask, 4-Stillhead, 5-Liebig condenser, 6-Receiver adaptor, 7-Separating funnel, 8-Thermometer, 9-Conical flask



- Heating under reflux
 - To prepare organic products without boiling off solvent, reactants or products
 - Ensures that the reaction goes to completion
 - Water bath can be used rather than Bunsen if can be carried out below 100°C
 - Heating mantle can be used for flammable liquids
 - **Anti-bumping granules added to liquid so it boils smoothly**
 - Otherwise large bubbles will form at bottom so the glassware vibrate / jump
 - Glass joints greased lightly so apparatus comes apart easily after experiment
 - Condensers should be clamped loosely as the outer jacket is very fragile + kept in upright position
 - Never put stopper in top-closed system or pressure would build up and the apparatus would explode
 - Rubber tubing used to connect the inlet of condenser to tap and outlet to the sink (water always enters the condenser at the bottom and leaves at the top)


- Distillation

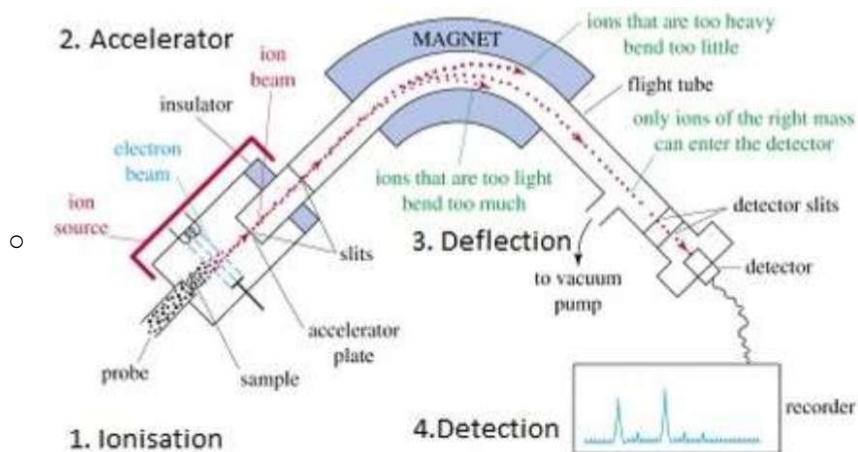
Aldehyde Preparation

- Separates a pure liquid from impurities
- Flask clamped by neck
- Still head connected to the flask
- Condenser connected to rubber tubing for water (**water enters at the bottom**)
- Flask used to collect the distillate so the apparatus is not airtight
- Heat the mixture gently (make sure the temperature doesn't reach the boiling point of the less volatile compound)
- Purifying organic products using a separating funnel
 - When there are two layers inside the collection flask: one organic layer, one aqueous / water layer
 - Ensure tap of the separating funnel is closed
 - Pour in mixture and place a stopper in the top of the funnel + invert to mix the contents
 - Allow layers to settle
 - Can't tell the layers: add water to the mixture, the layer that increase in volume is the aqueous layer
 - Place conical flask under the separating funnel
 - Remove stopper + open the tap until whole lower layer has left the funnel
 - If the top layer is accidentally poured then pour the content in the first conical flask back into the separating funnel and restart
 - Repeat this several times until the bottom layer is almost completely removed
- Redistillation
 - Organic compounds may have relatively close boiling points so the sample may still have some impurities left over
 - Carry out a second distillation (or more)
 - Only collect product with the exact boiling point of the target compound
 - Try to not overheat the mixture
 - Narrower boiling point range = purer product
- Drying an organic product
 - There may be water left in the organic product
 - Add organic liquid to conical flask
 - Add some drying agent with spatula + swirl the contents
 - e.g. CaCl_2 for drying hydrocarbons, CaSO_4 / MgSO_4 for general drying
 - Put a stopper on to prevent product from evaporating away
 - Leave for about 10 minutes
 - If the solid stuck in a lump water is still present so add more drying agent until it becomes a fine powder
 - After all the water is absorbed the organic mixture can be separated by filtration / simply decanting the liquid

Synthetic routes

4.2.4 Analytical technique

Definitions


Term	Definition
Fragmentation	The process in mass spectrometry that causes a positive ion to split into smaller pieces, one of which is a positive fragment ion
Fragment ions	Ions formed from the breakdown of the molecular ion in a mass spectrometer

IR spectroscopy

- Vibrations in bonds
 - Bonds vibrate at a particular frequency
 - Stretch: moving along the line between atoms so the distance between them changes
 - Bend: results in change in bond angle
 - Bonds only absorb radiation with the same frequency as the natural frequency of the bond
 - The frequency of the light depends on bond strength, bond length and atomic masses at both ends of the bond
 - Most bonds absorb at a frequency of $300 - 4000 \text{ cm}^{-1}$, i.e. IR radiation
 - Absorbing IR radiation causes covalent bonds to absorb energy and vibrate more
- Greenhouse effect
 - Most of the Sun's radiation is **short wave** and is relatively unaffected by atmospheric gases
 - They pass through the atmosphere to the Earth's surface and some is reflected as **long wave** radiation
 - C=O, O-H and C-H bonds absorb radiation in the IR range which causes bond in gas molecules to vibrate
 - e.g. CO_2 , H_2O and CH_4 molecules
 - The vibrating bonds eventually re-emit the energy as radiation that increases the temperature of the atmosphere close to the Earth's surface
 - This creates incentives to reduce CO_2 emission to reduce global warming
- Infrared spectroscopy
 - Determine the functional groups present
 - Sample placed in IR spectrometer
 - IR radiation beams with wavenumber $200-4000 \text{ cm}^{-1}$ is passed through the sample
 - Molecules absorb some IR + emerging beam is analysed to identify frequencies absorbed
 - IR spectroscopy is usually connected to a computer that plots a graph of transmittance against wavenumber
 - The computer uses the fingerprint region to identify the compound
 - Fingerprint region: region **below 1500 cm^{-1}** with **unique peaks to identify particular molecule**
 - All organic compounds produce a peak $2850-3100$ from C-H bond
 - Look at other peaks to identify other bonds present
- Uses of IR spectroscopy in real life
 - Remote sensors analyse IR spectra of vehicle emissions to detect pollutants
 - IR-based breathalysers pass beams of IR through breathed out gas + detect IR absorbance
 - Detecting C-O bonds in alcohol molecules
 - O-H bond is present in water vapour breathed out so it is not used
 - Blood test taken if the result suggests that the person is too drunk to drive safely

Mass spectroscopy

- Mass spectroscopy
 - Used to analyse **gaseous** samples
 - Consists of 4 basic regions

- Some molecular ions break down into smaller fragments by fragmentation
- Analysing the structure from a mass spectrum
 - M_r = the m/z value of the **rightmost peak**
 - There might be a small peak after M^+ peak called the $M+1$ peak due to the presence of carbon-13 isotope
 - Other peaks are due to fragment ions
- Common m/z values for fragment ions

m/z value	Ion (remember to include the + charge)
15	CH_3^+
29	CH_3CH_2^+
31	CH_2OH^+
41	$\text{C}_3\text{H}_5^+, \text{C}_2\text{H}_3\text{N}^+$
43	$\text{CH}_3\text{CH}_2\text{CH}_2^+ / \text{CH}_3\text{CO} / \text{C}_3\text{H}_7$
45	$\text{CH}_3\text{CH}_2\text{O}^+$
49	$\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2^+$

- Specify: peak at $m/z = \dots$ is due to ...

Combining analytical skills

- Identifying the organic compound
 - Elemental analysis: empirical formula
 - Mass spectrometry: determine molecular mass + identify sections of the molecule
 - IR spectrometry: identify bonds + functional groups present