

## 2.1.1 Atomic structure and isotopes

### Definitions

| Term                                                              | Definition                                                                                                                                     |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Isotopes</b>                                                   | Atoms of the same element with the same number of <b>protons and electrons</b> and <b>different numbers of neutrons and different masses</b> . |
| <b>Proton number / atomic number</b>                              | The number of <b>protons</b> in the nucleus of an atom.                                                                                        |
| <b>Nucleon number / mass number</b>                               | The number of <b>protons and neutrons</b> in the nucleus of an atom.                                                                           |
| <b>Relative isotopic mass / A</b>                                 | The mass of an isotope of an element compared to 1/12th of the mass of an carbon-12 atom.                                                      |
| <b>Relative atomic mass / <math>A_r</math> / <math>A_R</math></b> | The <b>weighted mean</b> mass of an atom of an element compared to 1/12 of the mass of an atom of carbon-12.                                   |
| <b>Cation</b>                                                     | A <b>positively charged</b> ion with fewer electrons than protons.                                                                             |
| <b>Anion</b>                                                      | A <b>negatively charged</b> ion with more electrons than protons.                                                                              |

### Concepts

- Properties of isotopes
  - Same chemical reactions
    - Same electron configuration & the same number of protons
    - Number of neutrons has no effect on reactions of an element
  - Small differences in physical properties
    - Higher mass isotopes = higher melting and boiling point + higher density
- Mass and charge of sub-atomic particles
  - | Particle         | Relative charge | Relative mass |
|------------------|-----------------|---------------|
| Proton / $p^+$   | 1+              | 1             |
| Neutron / $n$    | 0               | 1             |
| Electron / $e^-$ | 1-              | 1/1836        |
- Determining relative atomic mass and relative isotopic mass (for ions with single charges)
  - Mass spectrometer
  - Records abundance of ions of different isotopes and their mass-to-charge ratio (m/z ratio)
  - Value of relative isotopic mass can be worked out from m/z ratio and hence relative atomic mass

## 2.1.2 Compounds, formulae and equations

### Definitions

| Term                      | Definition                                        |
|---------------------------|---------------------------------------------------|
| <b>Binary compounds</b>   | Compounds that contains <b>two elements</b> only. |
| <b>Diatomic molecules</b> | Molecules composed of <b>two atoms</b> only.      |
| <b>Polyatomic ions</b>    | Ion containing more than one atoms.               |

### Concepts

- Anions to know

| Ion              | Formula            |
|------------------|--------------------|
| <b>Nitrate</b>   | $\text{NO}_3^-$    |
| <b>Carbonate</b> | $\text{CO}_3^{2-}$ |
| <b>Sulfate</b>   | $\text{SO}_4^{2-}$ |
| <b>Hydroxide</b> | $\text{OH}^-$      |

- Cations to know

| Ion               | Formula          |
|-------------------|------------------|
| <b>Ammonium</b>   | $\text{NH}_4^+$  |
| <b>Zinc ion</b>   | $\text{Zn}^{2+}$ |
| <b>Silver ion</b> | $\text{Ag}^+$    |

#### • Writing ionic equations

- We can only dissociate the **aqueous compounds**
- Split all chemicals into ions
- Cancel out spectator ions
- **★** No aqueous compound = no ionic equation

#### • Solubility

| Solubility                | Compounds                                                                                                                                                                                                                                   |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Soluble in water</b>   | <ul style="list-style-type: none"><li>• All common sodium, potassium and ammonium salts (also their carbonate and hydroxide salt)</li><li>• All nitrates</li><li>• Most common chlorides</li><li>• Most common sulfates</li></ul>           |
| <b>Insoluble in water</b> | <ul style="list-style-type: none"><li>• <b>Silver chloride, lead chloride</b></li><li>• <b>Lead sulfate, barium sulfate, calcium sulfate, strontium sulfate</b></li><li>• Most common carbonates</li><li>• Most common hydroxides</li></ul> |

## 2.1.3 Amount of substance

### Definitions

| Term                               | Definition                                                                                                                                                 |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Mole</b>                        | A mole is the amount of a substance that contains the Avogadro number of elementary particles.                                                             |
| <b>Molar mass / <math>M</math></b> | The mass in grams in each mole of the substance, measured in $\text{g mol}^{-1}$ .                                                                         |
| <b>Hydrated</b>                    | A crystalline compound that contains water (e.g. $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}_{(s)}$ ).                                                        |
| <b>Anhydrous</b>                   | A crystalline compound containing no water (e.g. $\text{CuSO}_{4(s)}$ ).                                                                                   |
| <b>Water of crystallisation</b>    | Water molecules that form part of the crystalline structure of a compound (e.g. $\text{H}_2\text{O}$ in $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}_{(s)}$ ). |
| <b>Stoichiometry</b>               | The relative quantities of substances in a reaction.                                                                                                       |
| <b>Standard solution</b>           | A solution of known concentration.                                                                                                                         |
| <b>Limiting reagent</b>            | The reactant that is not in excess and will be used up in the reaction.                                                                                    |

### Amount of substance

- Amount of substance
  - Symbol  $n$
  - Measured in moles (symbol mol)
    - \* Always use **decimals (not fractions)** in **every step** of a calculation
- Avogadro constant /  $N_A$ 
  - $6.02 \times 10^{23} \text{ mol}^{-1}$
  - The number of particles per mole
- Concentration ( $c$ )
  - Unit =  $\text{mol dm}^{-3}$  (aka molar /  $M$ ) or  $\text{g dm}^{-3}$
  - $\text{mol dm}^{-3}$ :  $c = \frac{n}{V} = \frac{\text{number of moles}}{\text{volume (in dm}^{-3}\text{)}}$
  - $\text{g dm}^{-3}$ :  $c = \frac{\text{mass (in g)}}{\text{volume (in dm}^{-3}\text{)}}$
  - Concentration in  $\text{mol dm}^{-3} = \frac{\text{concentration in g dm}^{-3}}{M_r}$
- Room temperature and pressure (RTP)
  - Temp = **20 °C / 293 K**
  - pressure = 1 atm or  $1.01 \times 10^5 \text{ Pa}$
- Standard temperature and pressure (STP)
  - Temp = 0 °C / 273 K
  - pressure = 1 atm or  $1.01 \times 10^5 \text{ Pa}$
- Molar gas volume /  $V_m$ 
  - The volume per mole of gas at a stated temperature and pressure
  - Under RTP: 1 mol = **24 dm<sup>3</sup> = 24,000 cm<sup>3</sup>**
  - Under STP: 1 mol = 22.4 dm<sup>3</sup> = 22,400 cm<sup>3</sup>
- Experimental techniques to measure the amount of substances

| Variable measured         | Method                                                                                                                                               |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Mass</b>               | <ul style="list-style-type: none"> <li>Use a digital mass balance</li> <li>Choose a balance with a suitable resolution for the experiment</li> </ul> |
| <b>Volume of solution</b> | <ul style="list-style-type: none"> <li>Use a measuring cylinder</li> <li>Standard solution: use volumetric flask</li> </ul>                          |
| <b>Gas produced</b>       | <ul style="list-style-type: none"> <li>Use a gas syringe / measure mass lost on a balance and calculate the</li> </ul>                               |

number of moles of gas produced

- Percentages yield

- Percentage yield =  $\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$

- Actual yield: the amount of the product obtained from a reaction
- Theoretical yield: the yield resulting from complete conversion of reactants into products
- Reasons for < 100% percentage yield
  - Reaction did not go to completion (reversible reaction)
  - Side reactions may have taken place along the main reaction
  - Purification of the product may result in the loss of some products

- Atom economy

- Atom economy =  $\frac{\text{sum of masses of useful product(s)}}{\text{sum of masses of all products or reactants}} \times 100\%$   
 $= \frac{\text{sum of molar masses of useful products}}{\text{sum of molar masses of all products or reactants}} \times 100\%$

## 2.1.4 Acids

### Definitions

| Term    | Definition                                                                                                    |
|---------|---------------------------------------------------------------------------------------------------------------|
| Acid    | When dissolved in water an acid releases $H^+$ ions (proton) into the solution.                               |
| Bases   | React with acid by <b>accepting <math>H^+</math> ions (protons)</b> and neutralising the acid to form a salt. |
| Alkalis | Bases that dissolve in water and release $OH^-$ ions into the solution.                                       |
| Salt    | Formed when the $H^+$ in an acid is replaced by a positive ion                                                |

### Common chemicals

- Common acids
  - $HCl$
  - $H_2SO_4$
  - $HNO_3$
  - $CH_3COOH$
- Common bases
  - Carbonates
  - Hydrogencarbonates
  - Metal oxides
  - Metal hydroxides
  - Ammonia (accept  $H^+$  and form  $NH_4^+$  ions)**
- Common alkalis
  - $NaOH$
  - $KOH$
  - $NH_3$**

### Acid-base reactions

- Strong and weak acid
  - Both release  $H^+$  ions /  $H^+$  donor in aqueous solutions
  - Strong acid
    - Completely dissociates** (> 99%) in aqueous solutions / releases all hydrogen atoms as  $H^+$  ions
      - e.g.  $HCl(aq) \rightarrow H^+(aq) + Cl^-(aq)$
  - Weak acid
    - Partially dissociates** (< 1%) in aqueous solutions / only releases a portion of available hydrogen atoms as  $H^+$  ions
      - e.g.  $CH_3COOH(aq) \rightleftharpoons H^+(aq) + CH_3COO^-(aq)$
- Neutralisation
  - The reaction of acids with bases (including carbonates, metal oxides and alkalis) to form salts
  - Ionic equation:**  $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$

### Experimental techniques

- Preparing standard solution
  - Solid weighed accurately **using a digital balance with 2 dp or more**
  - Dissolve solid in a beaker using distilled water
    - Use less distilled water than needed to fill the volumetric flask to the mark
  - Transfer the solution to (250 cm<sup>3</sup>) volumetric flask
    - Rinse the beaker and transfer washings to the flask so the last traces of the solution is transferred to the volumetric flask
  - Volumetric flask is filled to the graduation line

- Add distilled water a drop at a time using a dropping pipette
  - Keep adding until the **bottom of the meniscus** lines up exactly with the mark
- Mix the solution thoroughly
  - Volumetric flask is sealed with a stopper and inverted several times
- Titration
  - Add measured volume of one solution to conical flask using pipette
    - Typical tolerances:  $10 \text{ cm}^3: \pm 0.04 \text{ cm}^3$ ,  $25 \text{ cm}^3: \pm 0.04 \text{ cm}^3$ ,  $50 \text{ cm}^3: \pm 0.10 \text{ cm}^3$
  - Add other solution to burette, record initial reading
  - Add a few drops of indicator to conical flask
    -
  - Run solution from burette into conical flask until it reaches the end point (indicated by colour change)
    - Swirl the flask while the solution is added
  - Record final reading
  - Titre = final reading - initial reading
  - First titre carried out quickly to get approximate titre
  - Repeat accurately by adding solution dropwise as the end point is approached
  - Carry out until two accurate titres are concordant (within  $0.1 \text{ cm}^3$ )
  - Only use concordant results for calculating the mean titre

| Formula                | Acidic     | Neutral    | Alkaline |
|------------------------|------------|------------|----------|
| <b>Phenolphthalein</b> | Colourless | Colourless | Pink     |
| <b>Methyl orange</b>   | Red        | Yellow     | Yellow   |

## 2.1.5 Redox

### Definitions

| Term                    | Definition                                                                                                                                       |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Redox reactions</b>  | A reaction involving reduction and oxidation.                                                                                                    |
| <b>Oxidising agent</b>  | A reagent that <b>accepts / takes in</b> electrons / oxidises another species / is reduced                                                       |
| <b>Reducing agent</b>   | A reagent that <b>donates / gives out</b> electrons / reduces another species / is oxidised                                                      |
| <b>Oxidation number</b> | A measure of the number of electrons that an atom uses to bond with atoms of another element. Oxidation numbers are derived from a set of rules. |

### Oxidation number

- Oxidation number (oxidation state) rules
  - Elements
    - **Always 0**
    - Any bonding is to atoms of the same element in pure elements
  - Compound and ions
    - Each atom in a compound has an oxidation number
    - Sign is placed before the number
    - Sum of oxidation numbers in a compound / ion = total charge

- Fixed oxidation numbers

| Combined element | Oxidation number |
|------------------|------------------|
| O (normally)     | -2               |
| H (normally)     | +1               |
| • F              | -1               |
| Group 1          | +1               |
| Group 2          | +2               |
| Group 3          | +3               |

- Oxidation number for special cases

| Combined element                                   | Oxidation number |
|----------------------------------------------------|------------------|
| H in metal hydrides (e.g. NaH, CaH <sub>2</sub> )  | -1               |
| O in peroxide ions (O <sub>2</sub> <sup>2-</sup> ) | -1               |
| O bonded to F (e.g. F <sub>2</sub> O)              | +2               |

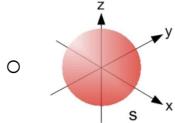
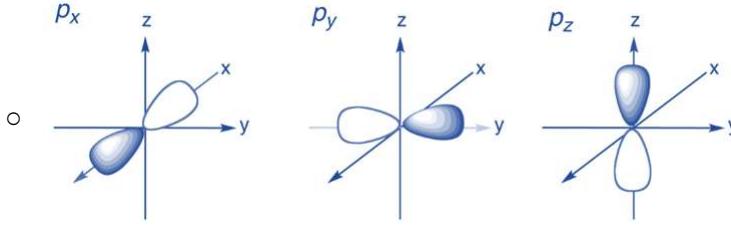
- Roman numerals in chemical names
  - Show oxidation number without sign
  - Nitrate = assume to be NO<sub>3</sub><sup>-</sup>
  - Sulfate = assume to be SO<sub>4</sub><sup>2-</sup>
  - e.g. chlorate(I) = ClO<sup>-</sup>

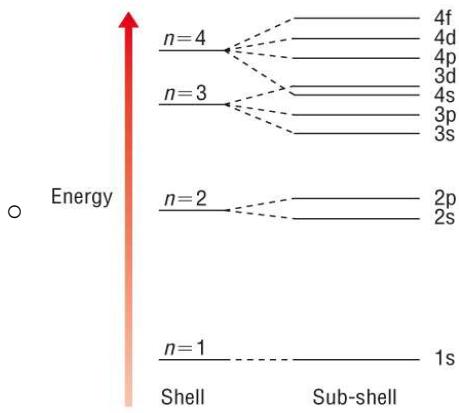
### Redox reactions

- How to identify redox reactions
  - Identifying oxidation
    - Gain of oxygen
    - Loss of hydrogen
    - Loss of electrons
    - Increase in oxidation number

- Identifying reduction
  - Loss of oxygen
  - Gain of hydrogen
  - Gain of electrons
  - Decrease in oxidation number
- \* Oxidation and reduction always **happen together**
- Redox reaction of acids
  - Metal + acid  $\rightarrow$  salt + hydrogen
  - Metal oxidised (oxidation number increases from 0 to ...)
  - Hydrogen in acid reduced (oxidation number decreases from +1 to 0)
  - (Iron is normally  $\text{Fe}^{2+}$  in redox reactions)

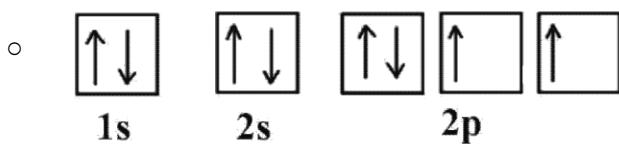
## 2.2.1 Electron structure



### Definitions


| Term                   | Definition                                                                         |
|------------------------|------------------------------------------------------------------------------------|
| Atomic orbitals        | A region around the nucleus that can hold up to two electrons with opposite spins. |
| Sub-shells             | A group of orbitals of the same type within a shell.                               |
| Electron configuration | A shorthand method for showing how electrons occupy sub-shells in an atom.         |

### Atomic orbitals

- Number of electrons that can fit in each shell


| Shell number $n$ | Number of electrons ( $= 2n^2$ ) |
|------------------|----------------------------------|
| 1                | 2                                |
| 2                | 8                                |
| 3                | 18                               |
| 4                | 32                               |

- Types of orbitals
  - s-orbitals
    - Spherical shape
    - Each shell from  $n = 1$  contains 1 s-orbital
    - Greater shell number  $n$  = greater radius of its s-orbital
  - 
- p-orbitals
  - Dumb-bell shape
  - Three separate p-orbitals at right angles to one another:  $p_x$ ,  $p_y$ ,  $p_z$
  - Each shell from  $n = 2$  contains 3 p-orbitals
  - Greater shell number  $n$  = its p-orbital is further from the nucleus
- d-orbitals
  - Each shell from  $n = 3$  contains 5 d-orbitals
- f-orbitals
  - Each shell from  $n = 4$  contains 7 f-orbitals
- Filling of sub shells and orbitals
  - Sub shells fill in the order of increasing energy ( $1s \rightarrow 2s \rightarrow 2p \dots$ )



- \* 4s is filled before 3d
- Inside each sub-shell
  - The orbitals all have the same energy within a sub-shell
  - One electron occupies each orbital before pairing starts to prevent any repulsion between paired electrons
  - Opposite spins within each orbital (one  $\uparrow$  and one  $\downarrow$ ) as both electrons are negatively charged and repel one another so this minimises repulsion
  - The paired electrons are easier to remove than the unpaired ones

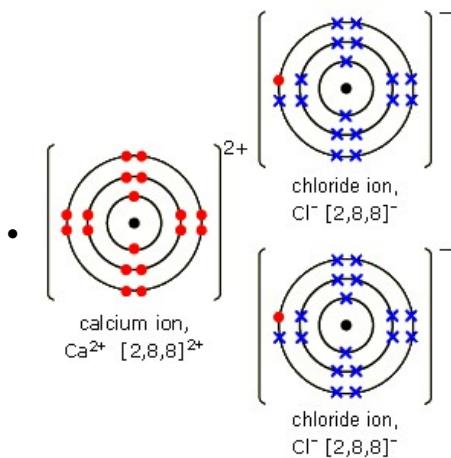
## Oxygen



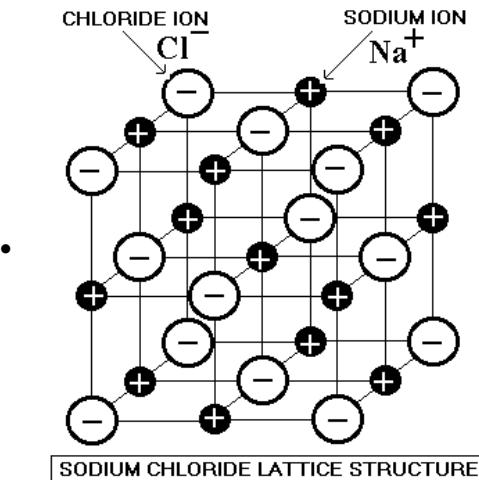
- More than one orbital within a sub-shell = the orbitals are degenerate (all the same)

## Electron configurations

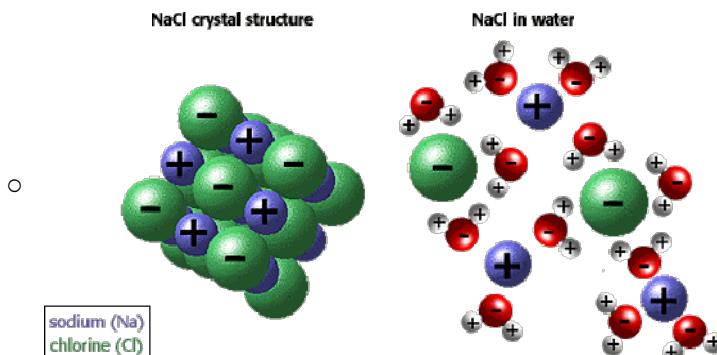
- Writing electron configuration of atoms
  - e.g. Li =  $1s^2 2s^1$ , F =  $1s^2 2s^2 2p^5$
  - Shorthand notation: in terms of the previous noble gas + outer electron sub-shells
    - e.g. Krypton =  $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6$  = [Ar]  $3d^{10} 4s^2 4p^6$
    - **Always show outer shell electrons**
  - (4s can be written before 3d)
- Exceptions of atom electron configurations
  - Chromium: [Ar] **3d<sup>5</sup>4s<sup>1</sup>**
  - Copper: [Ar] **3d<sup>10</sup>4s<sup>1</sup>**
  - Chromium and copper do not follow the expected pattern
    - Half-filled / fully filled d sub-shell gives **additional stability**
- Electron configuration of ions
  - The highest energy subshell gain or lose electrons
  - d-block elements
    - 4s is at a lower energy level than 3d sub-shell so it is filled first
    - Once filled the energy level of 3d falls below 4s so 4s empties before 3d


## 2.2.2 Bonding and structure

### Definitions


| Term                            | Definition                                                                                                                                                                                                   |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Polarity</b>                 | There is an uneven distribution of electrons.                                                                                                                                                                |
| <b>Polar molecule</b>           | A molecule with an overall dipole, having taken into account any dipole across bonds and the shape of the molecule.                                                                                          |
| <b>Bond angle</b>               | The angle between 2 bonds in a molecule.                                                                                                                                                                     |
| <b>Electronegativity</b>        | A measure of the attraction of a bonded atom for the shared pair of electrons in a covalent bond.                                                                                                            |
| <b>Dipole</b>                   | A separation in electrical charge so that one atom of a polar covalent bond, or one end of a polar molecule, has a small positive charge, $\delta+$ , and the other has a small negative charge, $\delta-$ . |
| <b>Intermolecular forces</b>    | An attractive force between molecules. Can be London forces, permanent dipole-dipole interactions or hydrogen bonding.                                                                                       |
| <b>Giant ionic lattice</b>      | A three dimensional structure of oppositely charged ions, bonded together by strong ionic bonds.                                                                                                             |
| <b>Simple molecular lattice</b> | A three dimensional structure of molecules, bonded together by weak intermolecular forces.                                                                                                                   |

### Ionic compounds


- Ionic bonding
  - The strong electrostatic attraction between positive and negative ions
  - Occurs between atoms that have a **big difference in electronegativity** (usually metals and non-metals)
- Dot and cross diagram

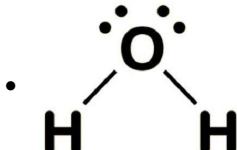


- Structure of ionic compounds
  - Each ion attracts oppositely charged ions strongly in **all directions**
  - Forms a **giant lattice structure** containing many ions
  - Every positive ion is surrounded by negative ions; every negative ion is surrounded by positive ions
  - Regular arrangement of ions = regular, predictable shapes depending on size of ions
    - $\text{NaCl}$  = always cubic
    - $\text{MgSO}_4$ ,  $\text{CuSO}_4$ , etc. = not cubic

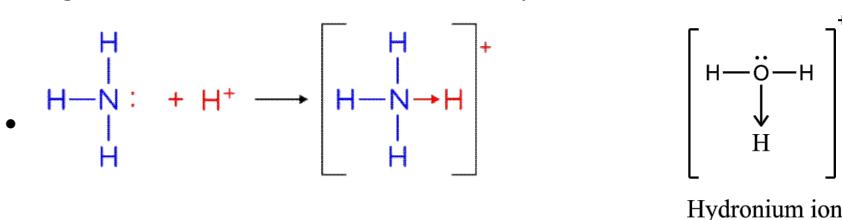


- Properties
  - High melting and boiling points
    - Strong electrostatic forces of attraction between oppositely charged ions in the **giant ionic lattice**
    - A high temperature is needed to provide the large amount of energy needed to overcome the strong electrostatic attraction
    - Higher for ions with greater ionic charges due to stronger attraction between ions
      - Ionic substances with complex ions: can decompose before they reach melting point
  - Dissolve in polar solvents (e.g. water)
    - Salvation / hydration
      - Polar solvent molecules attract the ions in the lattice
      - Anions to positive dipole, cations to negative dipole
      - Energy is released in the process
      - Molecules break down the lattice + surround each ion in solution
    - Strong ionic bond must be overcome for the substance to dissolve
      - Energy to do this is supplied by solvating / hydrating the ions / absorbed from the surroundings
    - If the compound is made of ions with strong charges the attraction can be too strong to be broken down → less soluble
    - Solubility depends on
      - Relative strengths of attractions within the lattice
      - Attraction between ions + water molecules




- Does not conduct electricity in solid state
  - Ions held in fixed positions
  - No mobile charge carriers
- Conduct electricity when dissolved or molten
  - The solid ionic lattice breaks down
  - Ions are free to move as mobile charge carriers

## Covalent compounds

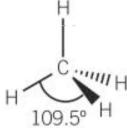
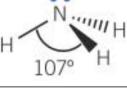
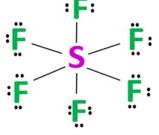

- Covalent bonding
  - The **strong** electrostatic attraction between a shared pair of electrons and the nuclei of the

bonded atoms

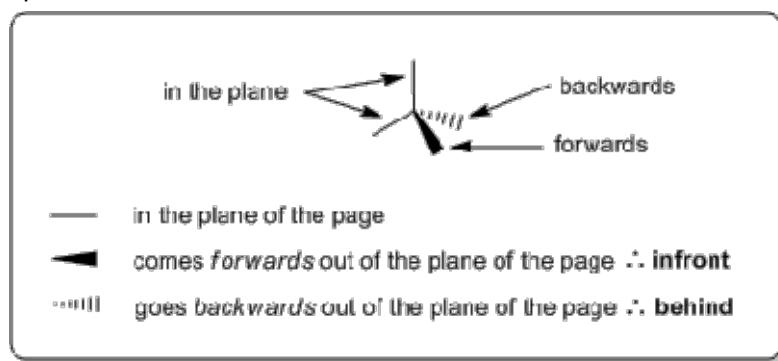
- Occur between atoms that have a **small difference in electronegativity**
- Formed when the atomic orbitals of the two atoms overlap and combine to form a new orbital (still holding 2 electrons max)
- Covalent substance structure
  - Attraction is **localised** between the shared pair of electrons and the nuclei of the bonded atoms only
  - Results in **small molecules** consisting two or more atoms (simple molecular lattice if solid)
- Lone pairs / non-bonding pair
  - **Paired** electrons that are **not shared**



- Multiple covalent bond
  - The electrostatic attraction is between **two / three shared pairs** of electrons and the nuclei of the bonded atoms
- Dative covalent bonds / coordinate bonds
  - The shared pair of electrons is supplied by one of the bonding atoms only
  - The shared pair is originally a lone pair of electrons on one of the bonded atoms
  - e.g. ammonia molecule donates its lone pair of electrons to a H<sup>+</sup> ion to form NH<sub>4</sub><sup>+</sup> ion


- Exceptions
  - Boron
    - Only 3 outer shell electrons can be paired → only forms 3 pairs
    - e.g. BF<sub>3</sub> only has 6 electrons around the boron atom
  - Phosphorus, sulfur, chlorine (expansion of the octet)
    - Outer electrons are in  $n = 3$  shell which can hold up to 18 electrons
    - More electrons are available for bonding (can have more than 8 electrons in outer shell e.g. ClF<sub>7</sub>)
- Average bond enthalpy
  - A measurement of covalent bond strength
  - Higher average bond enthalpy = stronger covalent bond


## Molecule structures

- Molecule shape and bond angles
  - Electron pairs around the central atom repel each other as far apart as possible
  - Lone pairs repel more strongly than bonded pairs
  - They repel bonded pairs slightly closer together → reducing the bond angle
    - 4 pairs / regions: bond angle reduced by approx. 2.5° per lone pair
  - The greater the number of electron pairs the smaller the bond angle
  - (Mention the number of bonded pairs and lone pairs)

| Electron pairs | Bonded pairs | Lone pairs | Name            | Shape and bond angle |
|----------------|--------------|------------|-----------------|----------------------|
| 2              | 2            | 0          | Linear          | $180^\circ$<br>      |
| 3              | 3            | 0          | Trigonal planar | $120^\circ$<br>      |

|   |   |   |             |                                                                                                                                                        |
|---|---|---|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | 4 | 0 | Tetrahedral |                                                                      |
| 4 | 3 | 1 | Pyramidal   |                                                                      |
| 4 | 2 | 2 | Non-linear  |                                                                      |
| 6 | 6 | 0 | Octahedral  | <br>Remember SF <sub>6</sub> as an example of octahedral arrangement |

- Bond representations



- Predicting molecular shape of ions

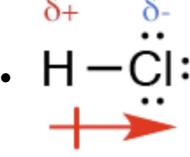
- Ions with oxygen
  - Add an electron to an oxygen atom for every negative charge
  - Bonds can be single or double bond
- Cations with hydrogen
  - Add positive charge by H<sup>+</sup> ions
- Others
  - Add / remove electrons from the central atom to match the charge
  - Pair up surrounding atoms and count bonded pairs and lone pairs

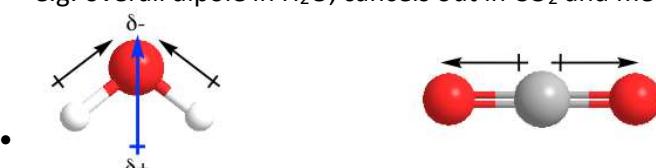
## Electronegativity and bond polarity

- Electronegativity
  - A measure of the attraction of a bonded atom for the pair of electrons in a covalent bond
  - Measured using Pauling electronegativity values (higher = attract bonded electrons more strongly)

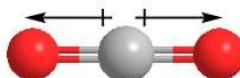
|           |           |                  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |  |           |
|-----------|-----------|------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|-----------|
| H<br>2.1  |           |                  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |  | He<br>--- |
| Li<br>1.0 | Be<br>1.5 |                  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |  |           |
| Na<br>0.9 | Mg<br>1.2 |                  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |  |           |
| K<br>0.8  | Ca<br>1.0 | Sc<br>1.3        | Ti<br>1.5 | V<br>1.6  | Cr<br>1.6 | Mn<br>1.5 | Fe<br>1.8 | Co<br>1.8 | Ni<br>1.8 | Cu<br>1.9 | Zn<br>1.6 | Ga<br>1.6 | Ge<br>1.8 | As<br>2.0 | Se<br>2.4 | Br<br>2.8 | Kr<br>3.0 |  |           |
| Rb<br>0.8 | Sr<br>1.0 | Y<br>1.2         | Zr<br>1.4 | Nb<br>1.6 | Mo<br>1.8 | Tc<br>1.9 | Ru<br>2.2 | Rh<br>2.2 | Pd<br>2.2 | Ag<br>1.9 | Cd<br>1.7 | In<br>1.7 | Sn<br>1.8 | Sb<br>1.9 | Te<br>2.1 | I<br>2.5  | Xe<br>2.6 |  |           |
| Cs<br>0.7 | Ba<br>0.9 | La-Lu<br>1.1-1.2 | Hf<br>1.3 | Ta<br>1.5 | W<br>1.7  | Re<br>1.9 | Os<br>2.2 | Ir<br>2.2 | Pt<br>2.2 | Au<br>2.4 | Hg<br>1.9 | Tl<br>1.8 | Pb<br>1.8 | Bi<br>1.9 | Po<br>2.0 | At<br>2.2 | Rn<br>--- |  |           |
| Fr<br>0.7 | Ra<br>0.9 | Ac-No<br>1.1-1.7 |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |  |           |

- Important electronegativity values


| Element  | Electronegativity |
|----------|-------------------|
| Fluorine | 4.0               |
| Oxygen   | 3.5               |
| Chlorine | 3.0               |
| Nitrogen | 3.0               |
| Carbon   | 2.5               |
| Hydrogen | 2.1               |


- Electronegativity pattern
  - Electronegativity increases across the periodic table and up the periodic table
  - Across the periodic table the nuclear charge increases and the atomic radius decreases → attraction increases
  - Atomic radius increases down the table + increased shielding → attraction decreases
  - Fluorine is the most electronegative element**

- Predicting type of bond


| Bond type      | Electronegativity difference |
|----------------|------------------------------|
| Covalent       | 0                            |
| Polar covalent | 0 - 1.8                      |
| Ionic          | > 1.8                        |

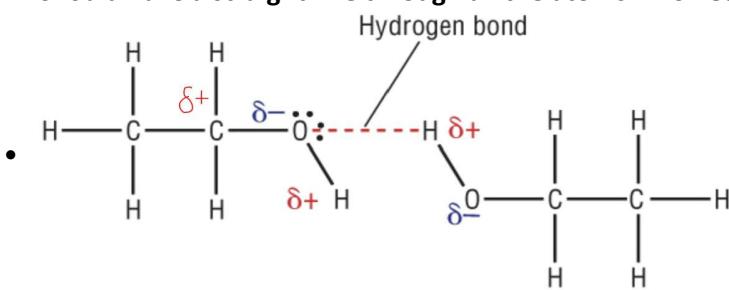
- Pure covalent bond
  - Non-polar** bond
  - The bonded electron pair shared equally between the bonded atoms
  - Happen when:
    - The bonded atoms are the same
    - The bonded atoms have same / similar electronegativity (e.g. carbon and hydrogen)
- Polar covalent bonds
  - Polar bond
  - The bonded electron pair is shared unequally between the bonded atom
  - When the bonded atoms are different and have different electronegativity values
  - Form permanent dipole: small positive ( $\delta+$ ) / negative charge ( $\delta-$ ) on the two bonded atoms, oppositely charged on each

$\delta+$        $\delta-$   
 $\text{H} - \text{Cl}:$   

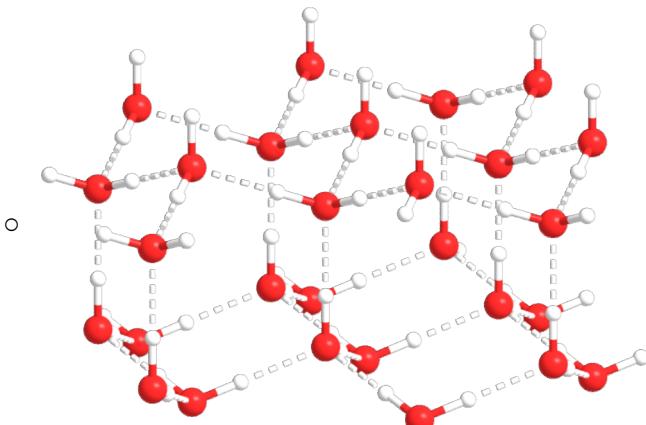
- Polar / non-polar molecules
  - Polar molecules require polar bonds with dipoles that **do not cancel out** due to their direction
  - If the molecule is symmetrical in 3D **and** the polarities cancel out the molecule is non-polar
  - e.g. overall dipole in  $\text{H}_2\text{O}$ , cancels out in  $\text{CO}_2$  and methane



$\text{H}_2\text{O}$ , bend shape  
polar




$\text{CO}_2$ , linear shape  
non-polar


## Intermolecular forces

- Types of intermolecular forces
  - London forces / induced dipole-dipole **interactions** / dispersion forces (van der Waals' forces)
  - Permanent dipole-dipole **interactions** (van der Waals' forces)
  - Hydrogen bonding (a special type of permanent dipole-dipole interactions)

- London forces / induced dipole-dipole interactions
  - Exist between all molecules, only temporary
  - Creation
    - Movement of electrons produces changing dipole in a molecule
    - There is an uneven distribution of electrons which causes an instantaneous dipole
    - At any instant an instantaneous dipole will exist but position shifts constantly
    - Instantaneous dipole induces a dipole on a neighbouring molecule
    - The induced dipole induces dipoles on further molecules, they then attract one another
    - Electrons move and the dipole is gone and the attraction disappears and reappears elsewhere
  - Very weak - the weakest of all intermolecular forces
    - The **only intermolecular** force that exist between non-polar simple covalent molecules
    - They have very low melting and boiling points (normally gases / volatile liquids under room temperature)
- London forces strength pattern
  - Stronger down the periodic table
  - More electrons in each molecule
  - Larger instantaneous + induced dipoles
  - Greater induced dipole-dipole interactions
  - Stronger electrostatic attractive forces between molecules
- Permanent dipole-dipole interactions
  - Act between **permanent dipoles** in polar molecules
  - Permanent dipole-dipole interactions is much stronger than London forces
    - Polar molecules have both London forces and permanent dipole-dipole interactions
    - Mean melting and boiling point of polar molecules is much greater
- Hydrogen bond
  - Occurs when a highly de-shielded hydrogen in one molecule is attracted to a lone pair on a **N, O or F** atom in another molecule
    - Highly de-shielded hydrogen: a hydrogen atom directly bonded to an **very electronegative atom (N, O or F)**
  - A lone pair of electrons on a N/O/F atom forms bond with the  $\delta+$  of a hydrogen atom in a different molecule
  - Strongest type of intermolecular attractions
    - Molecules with hydrogen bonds between them have relatively high melting and boiling points
    - More hydrogen bond = greater increase in melting and boiling points
- Hydrogen bond diagram
  - Shown by a dotted line between lone pair + hydrogen atom
  - Should have a **straight line through all the atoms involved**



- Anomalous properties of  $\text{H}_2\text{O}$ 
  - Solid less dense than liquid
    - Each water molecule can form **4 hydrogen bonds** (2 lone pairs + 2 hydrogen atoms in O-H bond)
    - Hydrogen bonds extend outwards and **hold water molecules apart** in an **open lattice structure**
    - Water molecules form an **tetrahedral lattice** full of holes
    - Water molecules in ice are further apart than in water
    - (Bond angle for hydrogen involved in hydrogen bond is  $180^\circ$ )



- Relatively high melting and boiling points
  - Has hydrogen bond (much stronger) + PDD + IDD between molecules
  - A large quantity of energy is needed to break hydrogen bonds
  - When ice lattice breaks the arrangement of hydrogen bonds is broken
  - When water boils hydrogen bonds break completely

## Simple molecular substances

- Simple molecular substance
  - Made of simple molecules (small units with a definite number of atoms)
  - Simple molecules form a regular structure called a simple molecular lattice in the solid state
    - Shape of the lattice is determined by the packing pattern of the molecules
    - Molecules held together by weak intermolecular forces
    - Atoms within each molecule bonded together by strong covalent bonds (**intramolecular forces**)
- Properties of non-polar simple molecular substances
  - Low melting and boiling point
    - Only weak London forces between molecules
    - Weak intermolecular forces can be broken by energy present at low temperatures
  - Solubility
    - Non-polar solvent
      - Tend to be soluble
      - Intermolecular forces form between the molecules and the solvent
      - Weaken the intermolecular forces in the simple molecular lattice
      - The intermolecular forces break and the compound dissolves
    - Polar solvent
      - Tend to be insoluble
      - Little interaction between the lattice and the solvent molecules
      - **Intermolecular bonding in solvent** is too strong to be broken
  - Non-conductors of electricity
    - No free electrons or mobile ions in simple molecular substances, cannot complete a circuit
    - No mobile charge carriers
- Properties of polar simple covalent substance
  - Higher melting and boiling point
    - Permanent dipole-dipole interactions are stronger than London forces
    - More energy is required to break them
  - Solubility
    - Hard to predict
    - Usually soluble in polar solvents: polar solute/solvent molecules can attract each other
    - If they contain a significant non-polar region they may also be soluble in non-polar solvents
    - Solubility depends on strength of dipole
  - Electrical conductivity
    - Can conduct electricity if they can ionise and form mobile ions

- Otherwise same as above